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Railway construction over the soft soil of the active Ganges-Brahmaputra floodplain in 
the Padma Bridge Rail Link is the first of its kind in Bangladesh.  A 2D finite element 
modeling using Plaxis investigated the long-term settlement behavior of ballast bottom 
as well as the factor of safety (FS) of this railway embankment.  The contribution of 
cement-mixing piles (CMPs) in settlement reduction and FS improvement has been 
studied.  Parametric study considers three train speeds, between 100–170 km/hr, and two 
soil profiles along different chainages:  82km+183m (Ch1) and 84km+102m (Ch2).  The 
settlement of ballast bottom in both chainages are found higher in the long term, showing 
greater settlement in Ch2.  Due to treatment, the short-term settlement of embankment 
bottom decreases by 13.8% at lower train speeds, and at 170 km/hr, the reduction 
increases to 18% and 16% for Ch1 and Ch2, respectively.  The long-term settlement of 
ballast bottom is also reduced by 20% for lower speeds and 22% for a train speed of 
170km/hr.  CMP treatment is effective in settlement reduction, and the behavior was 
almost similar for both chainages, both short- and long-term.  The treatment is seen to 
be more effective at higher train speeds.  Due to treatment, increases of FS by 29–31% 
and 25–27% for Ch1, as well as 35–39% and 26–30% for Ch2, are obtained in the short 
and long term, respectively.  The effect of treatment in providing stability is more 
prominent for Ch2 and its effect is also greater in the short term. 
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1 INTRODUCTION 

The construction of the Padma Bridge Rail Link (PBRL) is a challenging engineering endeavor that 
strives to establish connectivity over the Ganges-Brahmaputra Delta.  The exceptional soft soil of 
this floodplain has made it difficult to attempt to build any rail track without providing sufficient 
strengthening to the subsoil (Hoque et al. 2023).  Soft soil settlement characteristics can be 
improved by various artificial inclusions, which mainly include geogrids, geo-composites, shock 
mats, prefabricated vertical drains (PVDs), cement-mixing piles (CMPs), deep cement-mixed 
columns (DCMs), micro-piles, driven piles, vibro-concrete columns, or stone columns.  These 
improve the bearing capacity of soft soil strata in the embankment by transferring the loads to firm 
layers.  Some literature on railway track behavior encompasses both experimental and numerical 
studies on several geological strata, i.e., Bangkok soft soil (Likitlersuang et al. 2018), Sweden soft 
soil (Madshus and Kaynia 2000), Indian Marine Clay (Fulambarkar et al. 2021), and soft Ballina 
clay (Rezania et al. 2018).  However, the soil characteristics of the Ganges-Brahmaputra floodplain 
significantly vary from these geological compositions, making it essential to analyze the rail track 
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behavior under various train load conditions, as well as to assess the positive contribution of soil 
treatment.  

In this study, the settlement behavior and safety-against-bearing failure of railway embankment 
constructed over soft deltaic deposits under varying train speeds have been investigated by 
numerical analysis in Plaxis 2D.  The effect of installing CMP has been simulated in the 2D finite 
element model by modifying the material property of cement-treated soil, and a comparison is made 
on settlement behavior and the factor of safety (FS) of treated and untreated soil in the short and 
long term.  

2 METHODOLOGY 

The Padma Bridge Rail Track has a total stretch of 162 km, which consists of soft soil in several 
locations.  In this study, two sections along chainage 82km+183m (Ch1) and 84km+102m (Ch2) 
were selected as representatives, having SPT N values between 2 to 8 in the soft soil layers.  The 
Ch1 subsoil consists of three layers having a top layer of soft clay underlain by soft soil and silt 
with fine sand, respectively.  On the other hand, the Ch2 subsoil consists of six distinctive layers 
having soft soil at the top four layers and silty fine to medium sand at the bottom two layers.  The 
constructed railway embankment consists of an embankment fill, subgrade, sub-ballast, and a 
ballast layer. 

In this study, finite element software PLAXIS 2D has been used to model the subsoil and 
constructed rail embankment.  To properly represent the boundary conditions at infinity, the model 
length was defined as 60 m (x axis) and height as 30 m (y axis) so that the height and length ratios 
of model to embankment are greater than 4 and 3, respectively (Mestat et al. 2004).  Only the 
movement along y axis was allowed on two sides of the model, the bottom was restricted for 
movement in both x and y directions.  Following the procedure of Likitlersuang et al. (2018), the 
train load was simulated as a pseudo-static load (P) having the quantity of 68, 72.5, and 84 kN/m/m, 
respectively, for the three different train speeds investigated in this study:  100, 120, and 170 km/hr. 

Eqs. (1) to (3) were used for the estimation of the pseudo-static loads.  A detailed description 
of the variables in the equations, soil profile and property, and finite element modeling can be found 
in Aziz et al. (2022). 

 P = IF x !"!
#

 x DF (1) 
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%
) (2) 

 DF = ('.')*×,)	/	*0.01
*''
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Soil was defined as a “Mohr-Coulomb” material, and very fine meshes were generated.  The 
short-term settlements at ballast bottom and embankment bottom along the centerline of the model 
were observed after a consolidation of 60 days and a subsequent application of train load.  Whereas 
long term settlement was observed after a consolidation of 5,000 days.  The FS against-bearing-
capacity failure has also been investigated using the phi-c reduction method.  

Apart from the long-term behavior of subsoil in the natural condition, this study aimed to 
investigate the potential of Cement Mixing Piles (CMP) as a treatment method for improving the 
strength and positively affecting the settlement.  As the analysis was performed in Plaxis 2D, the 
CMP treated soil has been considered as a composite foundation having an equivalent strength 
index.  This strength index has been calculated based on c and ϕ values of the soil and cement-
mixing pile body, which is also inclusive of the triangular arrangement pattern of CMPs with pile 
spacing of 1.2 m and a pile diameter of 0.5 m.  In this study, the final values have been obtained 
from the reports of the PBRL Project through personal communication where commercially 
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available software has been used for determining the equivalent strength index (refer to Table 1).  
The treatment was considered up to 8.8 m and 11.5 m for Ch1 and Ch2, respectively.  Figures 1(a) 
and 1(b) represent the long-term settlements along the whole soil profile of Ch1 and Ch2, 
respectively, in treated subsoil conditions induced by a train speed of 120 km/hr.  

Table 1.  Properties of foundation soil layers at treated condition. 

 82km+ 183m (Ch1) 84km+ 102m (Ch2) 
Parameters Soft clay Soft Soil Soft clay Silty fine to medium sand Soft soil Soft clay 

Cohesion, c (kN/m2) 31.73 43.86 46.61 38.02 34.92 46.61 
Angle of friction, φ (°) 11.41 12.88 12.29 30.04 10.95 12.29 

 

  

Figure 1.  Long-term settlement at treated conditions for train speed of 120 km/hr:  (a) Ch1 and (b) Ch2. 

3 RESULTS AND DISCUSSIONS  

3.1    Long-Term Behavior 

3.1.1    Settlement of ballast bottom 

Figures 2(a) and 2(b) show the settlement of the ballast bottom (BB) in the long term after a 
consolidation of 5,000 days.  For all three speeds, the settlement increases by 16.4 cm (47.5%) and 
by 13 cm (29.4%) on average compared to the short-term settlement (as reported in the previous 
study of the authors, Aziz et al. 2022) for Ch1 and Ch2, respectively.  The final settlement is greater 
for Ch2 even in the long term than it was in the short term.  The existence of additional soft-soil 
layers extending to a greater depth may be responsible for the greater long-term settlement in Ch2.  
Considering the plastic strain accumulations owing to repeated train loads may have resulted in 
larger long-term settlements, however, it is beyond the scope of the current study.  
 
3.1.2    Factor of safety 

Table 2 summarizes the results for all FS and settlements.  For all three train speeds, the FS is 
nearly 1.4 or greater for untreated conditions of Ch1 and Ch2 in long term.  These FS values signify 
that the railway embankment is safe against bearing-capacity failure in the long term in both 
chainages.  Comparing the long-term FS with short-term, for Ch1, the FS increases by 16–17% in 
untreated conditions.  However, for Ch2 the increase is lower, i.e., 13%. 

 

(a) (b) 
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3.2    Effect of Treatment 

3.2.1    Effect of soil treatment in short-term settlement of embankment bottom 

As the foundation soil is treated in the form of cement-mixing piles, the settlement at the 
embankment bottom (EB) reduces by 13.8% for both Ch1 and Ch2 at V = 100 and 120 km/hr.  
However, as the train speed becomes 170 km/hr, the effect of the treatment can be considered more 
as the settlement reduces by 18% for Ch1 and 16% for Ch2.  Figures 3(a) and 3(b) show the change 
of settlement along the distance from the symmetric axis.  

3.2.2    Effect of soil treatment in short-term settlement of ballast bottom 

In the case of the ballast bottom (BB), at lower train speeds, the settlement is reduced by 15.4%, 
and at V = 170 km/hr, it is nearly 21% for Ch1.  For Ch2, the reductions are nearly 18.5% and 
20.3% for lower and higher speeds, respectively.  Hence, the role of treatment in settlement 
reduction is again more effective at higher speeds.  Figures 4(a) and 4(b) show the settlement in the 
ballast bottom in the case of treated foundation soil. 

  

Figure 2.  Long-term settlement of the ballast bottom at different train speeds for (a) Ch1 and (b) Ch2. 
[Note:  As settlement does not change significantly after 3000 days, the authors only presented the data till 

T=3000days]. 

Table 2.  Settlement and FS in untreated and treated conditions. 

Train 
Speed 

(km/hr) 

Chainage Condition of 
foundation 

soil 

Embankment bottom 
settlement (cm) 

Ballast bottom 
settlement (cm) 

FS 
(Short 
term) 

FS 
(Long 
term) Short term Short term Long term 

100 

Ch1 
 

Ch2 
 

Untreated 
Treated 

Untreated 
Treated 

27.45* 

23.67 

36.79* 

31.71 

33.25* 

28.27 

42.80* 

34.90 

49.30 
39.89 
55.80 
44.34 

1.225* 

1.605 

1.271* 

1.77 

1.428 
1.814 
1.434 
1.86 

120 

Ch1 
 

Ch2 
 

Untreated 
Treated 

Untreated 
Treated 

27.50* 

23.67 
36.81* 

31.71 

34.04* 

28.62 
43.48* 

35.20 

50.30 
40.29 
55.80 
44.75 

1.217* 

1.588 
1.262* 

1.744 

1.416 
1.794 
1.424 
1.825 

170 

Ch1 
 

Ch2 
 

Untreated 
Treated 

Untreated 
Treated 

29.2* 
23.85 
38.12* 

31.89 

36.20* 

28.50 
45.31* 

36.08 

53.10 
41.40 
58.73 
46.01 

1.194* 

1.543 
1.238* 

1.674 

1.39 
1.736 
1.393 
1.752 

*values reported from Aziz et al. (2022) 

3.2.3    Effect of soil treatment in long-term settlement of ballast bottom 

At lower train speeds, the settlement due to the treatment is reduced by 19.5% and 20.2%, 
respectively, for Ch1 and Ch2.  As the train speed increases to 170 km/hr, it becomes 22% for both 
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the chainages.  Thus, in the long term, significant improvement has not been observed for treated 
soils in settlement reduction compared to the short term.  One potential reason for this small impact 
of treatment can be attributed to the soil strength parameters after treatment.  The treatment 
provided to the soft soil in form of CMPs has significantly improved cohesion of soil, but the 
improvement of friction parameter is very little (maximum improvement of c and φ was observed 
192% and 38%, respectively, with respect to untreated c and φ value).  In the long term, soft soil’s 
effective strength principally comes from its friction properties as the apparent cohesion becomes 
zero.  As a result, in long term the additional strength provided by the cement mixing piles may 
help overcome some of the strength loss and reduce the settlement but not as much as in the short 
term.  Hence considering long term, for soft soil, treatment schemes should be selected in such a 
way that it imparts higher frictional resistance. 

  

Figure 3.  Settlement of embankment bottom of treated soil in the short term for (a) Ch1 and (b) Ch2. 

  

Figure 4.  Settlement of ballast bottom of treated soil in the short term for (a) Ch1 and (b) Ch2. 

3.2.4    Effect of soil treatment on factor of safety 

Figures 5(a) and 5(b) show the percent increase in FS in the short and long term for treated 
conditions compared to the untreated one for Ch1 and Ch2.  

Due to the treatment, the FS increases by 29–31% in the short term for Ch1.  For Ch2, however, 
it increases by 35–39%.  Hence, the effect of treatment is higher in Ch2 for imparting stability.  A 
similar occurrence is noticed in the long term.  However, for treated soil, the percentage increase 
in FS is lower in the long term than the short term for both chainages.  The same analogy stated in 
article 3.2.3 can also be stated in support of this finding.  Thus, the advantage of treatment in 
providing stability is greater in the short term than the long term.  Similar results have been 
observed for the other two train speeds. 
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Figure 5.  Percent increase in FS due to treatment in the short and long term for (a) Ch1 and (b) Ch2. 

4 CONCLUSIONS 

The present study encompasses the following notable conclusions. 
• Long-term settlements at the ballast bottom are significantly high.  Hence, treatment in the 

form of CMP will be helping to reduce the settlement. 
• In the short, CMP treatment has been effective in the reduction of settlement values, 

however, it did not produce any further noticeable reduction in the long term.  For the 
treated soil, at higher train speeds, treatments were more effective.  

• In contrast to settlement reduction there was no effect of train speed in changing the FS for 
treated soil compared to untreated.  Also, due to treatment, the increase in FS is affected 
due to changes in soil property and the duration of consolidation.  Ch2 shows a greater 
increase in FS, and the effect is greater in the short term.  

This study can provide valuable insight into the long-term settlement and stability behavior as 
well as the performance of the treated subsoil of railway embankment constructed on the soft deltaic 
deposits of the Ganges–Brahmaputra floodplain.  Further studies in terms of strain accumulation 
are required to provide more insight for interpreting the long-term behavior.  
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