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ABSTRACT: Equilibrium and instantaneous elastic responses from a solid enclose the boundary of the vis-
cous domain where rate-dependent effect comes into play. However, due to experimental limitation, direct
application of infinite slow or fast motions on the material is not practical to get such responses for determin-
ing material parameters. To this end, an experimental scheme for elastomeric materials has been proposed to
identify the elastic parameters through extrapolation and using hyperelasticity model. In this course, an ap-
proach for developing finite deformation rate-dependent model incorporating modified hyperelasticity func-
tion has been introduced. The aspects of determining the viscosity parameter using the finite deformation
model have been discussed. The adequacy of the proposed viscoelasticity parameter determination procedure
in simulating the experimental results has been verified using the numerical model.

Traditionally elastomeric materials find wide engi-
neering applications in structural components like
bridge bearings, shock absorbers etc. Recently, lead
plugged natural rubber bearings (commonly known
as lead rubber bearing) have been used in base iso-
lation systems of earthquake resistant structures.
Furthermore, for such specific end use, new special
elastomers like high damping rubbers (HDR) with
better energy absorption property have been devel-
oped. Unlike other elastomeric materials, HDR ex-
hibits a rate-dependent elastic response. However,
when subjected to cyclic loading, significant amount
of hysteresis and permanent set also occur. Because
of such features, the constitutive behavior of this
material is not yet fully understood. Hence there ex-
ists the necessity to develop a rational constitutive
model for simulating the mechanical response of
HDR for using in analysis and design computations.

Generally, hyperelasticity laws are used to model
the elastomeric response under monotonic loading.
However, such approach can not model the rate-
dependent behavior. So for developing a rate-
dependent constitutive model for this range of mate-
rials, a rate-dependent hyperelasticity modeling is
needed. Hence, the objective of this paper is to pres-
ent an approach for developing a model to simulate
the nonlinear rate-dependent behavior of the mate-
rial. This paves the way for developing a complete
model which will be able to simulate the cyclic re-
sponse as well.

Figure I presents schematic representation of the
viscoelastic domain. In a typical viscoelastic solid
loaded in an infinitely slow rate, the stress-strain
curve follows the E-E' path giving the equilibrium
response. On the other hand, in case of infinitely fast
motion, the response takes the 1-1' path. Such re-
sponse is known as instantaneous response. Both
equilibrium and instantaneous response are elastic
response and the domain of viscosity lies in between
these two states (Huber & Tsakmakis 2000). Thus,
elastic parameters determine the boundary of the
domain where viscosity comes into play. These pa-
rameters need to be determined from experimental
data.



However, from a practical point of view, neither
infinite slow motion nor infinite fast motion is pos-
sible due to experimental limitation. In this situation,
parameter determination process solely depends on
numerical trials, which is not meaningful from
physical point of view.

The paper presents an experimental scheme to
identify the material parameters for equilibrium and
instantaneous responses. In this course a finite de-
formation viscoelasticity model has been employed
and parameter estimation process has been dis-
cussed. Finally numerical simulation results ob-
tained from the model have been presented to dis-
cuss the adequacy of the proposed procedure.

An experimental scheme comprising of a multi-step
relaxation test, monotonic compression tests and
simple relaxation tests has been carried out to iden-
tify elasticity and viscosity parameters. All tests
were carried out on pre-loaded specimens. The fol-
lowing subsections present the details of the experi-
ments and salient features observed therein.

2.1 Experimental setup
In the present study, cubic specimens (50mm x
50mm x 50mm) were tested in a computer-
controlled servohydraulic testing machine. In order
to cut friction between the sample and the loading
plates, polypropylene films with lubricant on top and
bottom of the sample were used. The axial force and
the displacement were recorded using a personal
computer. The applied stretch (i.e. 1+dUL, where L
is the undeformed length) and the Cauchy stress
(true stress) were calculated under the assumptions
of homogenous deformation and incompressibility
of the specimens, respectively.

2.2 Pre-loading

Prior to the actual experiment, all virgin specimens
were subjected to specified pre-loading sequence.
The objective of such preprocess was to obtain a
stable state in the material by removing Mullins
softening effect (Mullins 1969) from rate depend-
ency phenomena. In the pre-process each virgin
specimen was subjected to cyclic uniaxial loading
for 5 cycles with a strain rate of O.Olls. Figure 2 pre-
sents the stretch history and stress-stretch relation in
a pre-loading test. Substantial softening behavior in
the first loading cycle, known as Mullins effect, is
evident from the figure. All specimens showed a re-
peatable stress-stretch response after passing 2-3
loading cycles. All tests described in the following
subsections have been carried out 20 minutes after
the end of respective pre-loading tests.
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Figure 2. Applied stretch history and stretch-stress re-
sponse observed in pre-loading.
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Figure 3. Applied stretch history and stretch-stress re-
sponse observed in multi-step relaxation test.
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Figure 4. Stretch-stress response and approximated equilib-
rium locus obtained from multi-step relaxation test.

2.3 Multi-step relaxation fest

Ideally, the equilibrium response is obtained when a
material is loaded at infinitely slow rate. However,
in case of highly viscous materials like elastomers it
is quite difficult to specify a slow loading rate where
the viscosity effect can be ruled out. In the current
study, a multi-step relaxation test has been carried
out to identify the equilibrium locus over the consid-
ered stretch range. Figure 3 presents the applied
stretch and obtained stress history of the test. It is
seen that, at the end of each relaxation interval of 10



min. duration, the stress relaxes to an apparent equi-
librium state. Although such an equilibrium state can
only be achieved in an asymptotic sense, these
stages invariably indicate the neighborhood of equi-
librium state. Figure 4 presents the stretch-stress re-
sponse together with the approximated equilibrium
locus in a multi-step relaxation test.

2.4 Monotonic compression test

The instantaneous elastic response of a solid is ide-
ally obtained when the material is loaded at infinite
fast rate. From an experimental point of view, how-
ever, there is a finite maximum value of stroke rate
for any displacement controlled loading device. Al-
though the loading rate on a specimen can be in-
creased by using a smaller specimen dimension in
the loading direction, the reduced aspect ratio of the
specimen increases the boundary effects on other
turn. In this context to find a method for estimating
the instantaneous response of the material, a series
of monotonic compression tests each at different but
constant strain rate has been carried out. In the test
sequence, strain rates were varied from O.OOlls to
0.96/s. For simplicity in illustration, Figure 5 shows
the rate-dependent stress-strain responses observed
only for the cases at strain rates of 0.00 lis, 0.025/s,
0.075/s, 0.225/s, 0.47/s and 0.96/s respectively. The
equilibrium locus as obtained from Figure 4 has also
been compared here with the cases of different strain
rates. The comparison of the curves displays the in-
crease of stress response with increasing applied
strain rate due to rate-dependency phenomena.
However, at higher strain rates a diminishing trend
in the increase of stress response is observed. From
these data, the instantaneous response will be ex-
trapolated which will be shown in the next section.
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Figure 5. Comparison of monotonic compression test stretch-
stress responses at different strain rates along with the equilib-
rium locus.
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Figurc 6. Stress history obtained from simple relaxa-
tion test at 0.7 stretch level.

2.5 Simple relaxation test
In order to observe the viscosity induced stress-
relaxation phenomena, simple relaxation tests have
been carried out at different stretch levels. Similar to
the multi-step relaxation test, the strain rate in the
loading phase was maintained at 0.5/s followed by a
hold time of 10 min. in each test. Figure 6 presents
the stress history obtained from the test at 0.7 stretch
level. The figure illustrates a rapid stress relaxation
feature of the material in the first 2 min. of hold time
after which it approaches asymptotically towards an
equilibrium state.

The experimental observation summarized in Sec-
tion 2 revealed the strain rate dependency of the
material. Typically hyperelasticity laws can be. used
for modeling elastomeric response for a partIcular
strain rate. However, for modeling nonlinear strain
rate dependency of the material, hyperelasticity laws
need to be combined with a rate-dependent model.
The following subsections summarize the aspects of
model configuration, the approaches for hyperelas-
ticity, and rate-dependency modeling.
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3.1 Model configuration

A three-parameter parallel model as illustrated in
Figure 7 has been considered. In this model, the hy-
perelastic element A represents the equilibrium re-
sponse, while the other branch consisting of hyper-
elastic element B and viscous dash-pot C represents
the over-stress feature coming from the rate-
dependent effect. The total strain E has been decom-
posed into elastic strain ee and inelastic strain ej
components.

3.2 Hyperelasticity modeling

In a phenomenological approach, under the assump-
tion of isotropy, elastomeric materials are repre-
sented in terms of a strain energy density function
W. Such functions for elastomers are expressed ei-
ther in terms of the strain invarients or principal
stretches. The strain-invariant-based models are easy
to implement in a mathematical fommlation, while
the stretch based models suggest to be more flexible
in fitting experimental data particularly at higher
strain levels. However to follow a simpler computa-
tional approach, this paper chooses strain-invariant-
based hyperelasticity models. In this approach, the
three strain invarients (i.e. I, II, III) are expressed as:

trB = "/ + 1../

trBB = (1..11..2)2 +

delB = (1..
1
1..21..3)2

2+ 1..
3

(1..21..3)2 + (1..31..)2

where A" A2, A] are the principal stretches; left
Cauchy-Green deformation tensor, B=FFT

;

F=deformation gradient tensor.
Among the strain invariant based models,

Mooney-Rivlin model is the most common one but
does not perform well at higher strain levels. To
solve this problem, a higher order function of I as
proposed by Yamashita & Kawabata (1992) has
been incorporated in this study for modeling the re-
sponses at higher strain levels. Equation 2 presents
the strain energy density function of the hyperelas-
ticity model.

W(I,II) = C5(I-3)+C2(II-3)+J:LCI-3)N+) (2)
N+l

where C5, C2, C3, N are non-negative material con-
stants. Here with the parameter C3=N=O the func-
tions reduces to the original Mooney-Rivlin model.

In case of uniaxial loading, under the assumption
of incompressibility, the third straiq invari

1
ant III re-

duces to unity giving A2=A3=(Alr2 =(Ar2
• In such

case, the function for Cauchy stress in loading di-
rection (i.e. 0"1) for this model is expressed as:

In the stretch-stress relation, C5 compon'hi1ll1
nates over the entire stretch regime of both tension
and compression. However, the effect of C2 compo-
nent is effective only at tension zone (particularly at
low stretch levels) in representing the characteristic
's' shape stress-stretch relation. In contrast to these,
the effect of C3 component with an exponential term
N is effective only at higher stretch levels.

3.3 Rate-dependency modeling

The stress and strain components of the three-
parameter parallel model presented in Figure 7 has
been converted into its finite deformation counter-
parts following the formulation of Huber & Tsak-
maids (2000). The finite deformation model has
been formulated under the framework of multiplica-
tive decomposition of F. Here the equilibrium
strains ee and ej (Fig. 7) are related to equilibrium
and intermediate equilibrium parts Fe and Fj so that
F = FeFj. This leads the Cauchy stress tensor Sand
rate of left Cauchy-Green deformation tensor B as
follows:

S = -pI + SE

S(EE) + 2 oW' Be _ 2 oW' B -I
SE = oIBe olIBe e

oW (E) oW (E) -1
2--B 2--B

oIB olIB

Be = BeLT + LBe - *Be~E-S~E)r

where p is the hydrostatic pressure of S and sub-
script 'E' denotes the extra part of corresponding
stress tensor. 1 is the identity matrix. The super-
script '(E)' denotes the equilibrium stress while the
subscript 'e' denotes equilibrium part of the strain
tensor. L is the velocity gradient tensor. Super-script
'D' denotes the deviatoric part of stress. The deriva-
tive part of Equation 4b is the over-stress part (de-
noted by 'prime' sign) due to rate-dependent effect.
11 is the material parameter representing viscosity.

In deriving the explicit expressions for S and rate
of Be, the hyperelasticity function presented in
Equations 2 and 3 has been used together with
Equation 4.

On the basis of experimental observation summa-
rized in Section 2 and the constitutive model pre-
sented in Section 3, the following sub-sections pres-
ent the parameter determination procedure for
representing equilibrium response, instantaneous re-
sponse, and viscosity effect.



4.1 Equilibrium response

The hyperelasticity model coefficients for the equi-
librium locus obtained from the multi-step relaxation
tests (Sec. 2.3) have been determined by a best-fit
technique. Since the experimental observation was
carried out in compression regime, there is no effect
of Cz coefficient for this zone. Hence to avoid get-
ting negative values in curve fitting, Cz was assigned
to zero. The values of the parameters are listed in
Table I.

Table 1. Elastic material parameters
State Cs C3

MJm·2 MJm·2

Equilibrium 0.48 0.015
Instantaneous 0.85 0.120

Cz
MJm·2

0.00
0.00

N
MJm-2

3.30
3.30

4.2 Instantaneous response

The monotonic compression tests presented in Sec-
tion 2.4 displayed a diminishing trend in an increase
of the stress-strain response at higher strain rates in-
dicating the approach of the instantaneous state. In-
terestingly, the overall stress-stretch response at each
strain rate has a characteristic'S' shaped curve,
which can be described by the coefficients of the
hyperelasticity model. On the basis of this feature,
the hyperelasticity constants i.e. Cs and C3 have
been determined for a constant value of N (as deter-
mined from the equilibrium locus) for different
strain rate cases over the range of 0.001ls - 0.96/s.
The Cs and C3 parameters determined this way have
been plotted respectively in Figures 8 and 9 against
the corresponding strain rate values.
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Figure 8. Cs parameter as a function of strain rate.
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Figure 9. C3 parameter as a function of strain rate.
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It is interesting to note that the values of Cs and
C3 parameters (Figs. 8,9) reach an asymptotic path
over the strain rate of 0.25/s. This must be due to
approach of the instantaneous state. The parameters
for the instantaneous response are estimated from
this asymptotic trend within finite strain rate region.
The values of the parameters have been presented in
Table 1. The subtraction of the values of Cs, C3, Cz
from the instantaneous to equilibrium state gives the
parameter values for the overstress response.

4.3 Viscosity

After determining the elastic parameters for the in-
stantaneous and equilibrium response, the only re-
maining unknown is the viscosity parameter 11 repre-
senting dash-pot viscosity (Fig. 7). Here, simple
relaxation test data has been used to obtain 11
through simulation trials of the rate-dependent hy-
perelasticity model (Sec. 3.3) by comparing the
computed stress relaxation rate with experimental
data.

For the relaxation test at 0.7 stretch level, 11 =
1.125 MPas represented the relaxation feature ade-
quately (Figure 10). The parameter determined this
way has been confirmed with simple relaxation data
at other stretch levels.
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Figure 10. Optimization of viscosity parameter by simulat-
ing the simple relaxation test result (-) Numerical simula-
tion, (e) Experiment

Using the parameters determined in the preceding
section, the model has been used to simulate the
monotonic compression test at varied strain rates .
Figure 11 presents the simulation results in compari-
son with experimental data, where a good confor-
mity is observed. However, as expected, the repre-
sentation of stress-stretch response at low stretch
levels is a bit poor particularly at lower strain rates
due to the limitation of hyperelastic model in that
region. As a general trend, the numerical results
slightly under estimated the response in all strain
rate cases.
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Figure II. Numerical simulation of monotonic compression
test at different strain rates. (-) Numerical simulation, (e)
Experiment

The locus of equilibrium response of elastomers can
be approximated from a multi-step relaxation ex-
periment. However, for estimating instantaneous re-
sponse, a series of monotonic uniaxial compression
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tests with increasing strain rate is needed. The hy-
perelasticity model can then be used to find the pa-
rameters for equilibrium and instantaneous re-
sponses from these experimental data. In this
connection, incorporation of an exponential term as
proposed by Yamashita & Kawabata (1992) in the
strain energy density formulation has been found to
improve the stress-stretch representation at higher
stretch level. After identifying the elastic parame-
ters, the rate-dependent finite deformation hyper-
elasticity model can be used to find the viscosity pa-
rameter by comparing the simple relaxation test
data. The comparison of numerical results with
monotonic compression test results at varied strain
rates has showed the adequacy of the proposed pro-
cedure. Although the parameter identification proce-
dure and constitutive model presented in the paper
are discussed in compression regime only, these are
applicable for tension regime as well .
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