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ABSTRACT 
Natural disasters like fires, earthquakes, and other emergencies often cause panic-induced road 
driving behaviours. The situation gets complex in heterogeneous non-lane-based traffic coupled with 
non-motorized vehicles. This study, thus, concentrates on examining panic-induced driving 
behaviours, optimising key traffic parameters, and identifying effective traffic control strategies under 
the conditions mentioned above. This study focuses on three major intersections in Dhaka, the capital 
of Bangladesh, a country in Southeast Asia, incorporating route and vehicle dynamics. A sensitivity 
analysis was performed to optimise traffic parameters, while a comparison of manual 
police-dependent control systems and adaptive signals was conducted to find the optimal control 
strategy. The study analysed the impact of Car Following Model Parameters on key traffic 
performance metrics by calibrating the model to reflect the panic conditions. No significant difference 
was found between adaptive and manual signals during emergencies. Adaptive signals, however, 
initially create smaller queues and smoother traffic flow but degrade performance as traffic volume 
increases, leading to larger queues and reduced efficiency. The findings suggest that, though beneficial 
under normal conditions, adaptive signals become similar to police-dependent manned signals during 
emergencies. The insights will aid in developing optimal traffic management strategies to improve 
emergency evacuation efficiency in non-lane-based heterogeneous traffic environments, befitting 
developing and developed built-up urban areas. 
 
Keywords: Panic Driving, Evacuation Route, Traffic Management, Simulation  
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INTRODUCTION 
Sudden disastrous emergencies like fires or earthquakes, terrorist attacks, or public health crises can 
cause heightened stress and fear, leading to panic among road users. This panic-induced state often 
results in speeding, tailgating, and erratic driving manoeuvres, which can increase the incidence of 
panic-induced aggressive driving behaviour (1) as individuals prioritise their safety. Panicked drivers 
present a serious safety hazard to themselves and other road users.  Evacuation routes can become 
congested, delaying emergency responses and stretching already limited resources, complicating 
disaster management and increasing the likelihood of additional injuries or fatalities. The situation 
becomes worse in areas where traffic is non-lane-based and heterogeneous, a common feature in less 
developed countries like Bangladesh (2). In these regions, various motorised vehicles—including 
buses, cars, CNGs (Compressed Natural Gas vehicles), and trucks and non-motorized vehicles 
(NMVs), such as rickshaws, bicycles, and pedestrians —share the same roadways. In a lane-based 
transport system, drivers can switch lanes and take advantage of gaps in traffic, potentially improving 
their ability to evacuate quickly and safely in an emergency. However, in non-lane-based traffic 
systems, such flexibility is not possible. Drivers cannot maneuver as efficiently due to the lack of 
defined lanes and the more chaotic traffic flow. This limitation, coupled with the heterogeneity of 
non-lane-based traffic where vehicles of various sizes and speeds share the road, exacerbates the 
situation, leading to greater congestion and further hindering effective emergency responses. 

Traffic signal control strategies are essential in managing these unpredictable scenarios. 
Countries like the United States, the United Kingdom, and Australia use Adaptive Traffic Signal 
Control (ATSC), which adjusts signal timings based on real-time traffic conditions. The current body 
of literature explores emergency driving behaviour, focusing on sensitivity analysis in the context of 
developed countries (3–5). However, these studies fall short of fully representing the traffic dynamics 
of developing countries when addressing driving behaviour in emergencies. A full-scale exploration 
of panic driving behaviour, particularly across heterogeneous traffic, would aid in understanding the 
complex interactions and safety implications of diverse vehicle types and driving patterns, ultimately 
leading to more effective traffic management and safety strategies. 

Based on the research gap identified, this study will delve into the following two objectives: 
1) to determine the critical traffic parameters to optimise throughput considering a panic situation in 
the heterogeneous non-lane-based traffic of a built-up city; 2) to ascertain an appropriate traffic 
control mechanism for managing the above-mentioned aggressive driving. Thus, this study will 
provide valuable insights into important policy implications for emergency management which may 
be applicable even for built-up areas of a developed city.  
 
LITERATURE REVIEW 
Studies have consistently shown that driving behaviour under normal conditions differs significantly 
from behaviour in emergencies. These differences have been investigated (6), focusing on perception 
reaction time (PRT) and critical headway. Their findings indicate that PRT follows a normal 
distribution in normal and emergency situations. However, PRT is shorter during emergencies 
compared to normal conditions. Additionally, the study found that the critical headway—the 
minimum safe distance drivers maintain between vehicles—is also reduced in emergencies. Similarly, 
another study (7) observed that drivers' ability to manage their vehicles declines under stress or 
emergency conditions. This decline is attributed to delayed reaction times and decreased judging 
speed and distance accuracy. Given these variables, driving behaviour in emergencies shares 
similarities with aggressive driving. Such aggressive driving is typically characterised by speeding, 
tailgating, erratic lane changes, and disregarding traffic signals (8).  

Numerous studies have explored aggressive driving behaviour across various contexts, 
employing diverse methodologies and models. In a recent study, authors identified and quantified 
aggressive driving patterns in the West Midlands, UK, using a GeoSpatial and Temporal Mapping of 
Urban Mobility (GeoSTMUM) approach with telematics data (9). The majority of the studies focused 
on modelling and analysing aggressive driving behaviour. For instance, few authors calibrated 
parameters to replicate aggressive driving behaviours at a roundabout using SSAM-derived time to 
collision values (3). In contrast, others conducted a sensitivity analysis of VISSIM driver behaviour 
parameters to understand the impact of vehicle aggressiveness on safety (10). Another author assessed 
crash potential under aggressive driving events on freeways using driving simulators and microscopic 
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traffic simulation models (11). While these studies offer valuable insights into aggressive driving 
behaviour, they generally concentrate on general aggressive driving rather than panic-induced 
aggressive driving. This specific phenomenon remains underexplored in the existing literature. One 
study (5) examined the impact of driver aggressiveness in an emergency on evacuation effectiveness. 
Additionally, most research has focused on developed countries, which often feature less complex 
traffic compositions than developing countries where lane discipline may not be well-maintained. 

Many authors used the Wiedemann 99 car following model for simulating erratic driving 
behaviour under various traffic scenarios. Table 1 summarises the suggested/optimised values of such 
parameters in the existing literature under different traffic contexts mostly related to aggressive 
driving. Since there is a research gap in defining panic-induced driving, parameters commonly used to 
define aggressive driving could serve as a starting point for identifying similar behaviours in panic 
driving. A description of the parameters and the ranges of those parameters used in this study is given 
in Table 1. In this table, the following traffic contexts are mentioned: 

Bottleneck condition: A bottleneck condition refers to areas on roadways where traffic flow is 
restricted, often leading to congestion and breakdown. These bottlenecks are typically caused by 
merging, aggressive lane-changing, or variations in speed 

Safety analysis:  safety analysis in a traffic context is a proactive approach that evaluates the 
risk of crashes using surrogate safety measures, such as traffic conflicts. Microsimulation models and 
advanced statistical techniques predict rare crash events based on more frequently observed traffic 
interactions. 

Rear-end conflicts: This conflict is the most common accident type at signalized intersections, 
which occurs when a vehicle slows down while approaching or passing through an intersection, 
putting the vehicle behind it in a potentially dangerous situation. 

Congested Traffic: A transport condition marked by slower speeds, longer travel times, and 
increased vehicle queues, typically occurring when traffic demand exceeds roadway capacity. 

Normal (overtaking considered): Mixed traffic flow with abrupt lane changing, with slower 
heavy vehicles in inner lanes forcing risky overtaking. 
 

In times of emergency, ensuring adequate protection through responsive traffic management 
techniques has become a primary concern for the traffic sector. Addressing this concern, numerous 
scholars have tried to develop methodologies or optimise signal strategies to plan and operate the 
evacuation process more effectively and efficiently. One study emphasised traffic signal timing 
optimisation under heterogeneous traffic conditions, concentrating on lane-based optimisation models 
(12). While primarily addressing normal traffic situations, their adaptive control strategies, capable of 
responding to real-time data, implicitly cover emergency scenarios on urban traffic networks, 
including arterial and collector roads. 

Similarly, some authors investigated the effectiveness of control measures such as ramp 
metering and variable speed limits in preventing congestion and improving traffic flow on 
expressways (13). In another study, the authors focused on heterogeneous traffic conditions, 
addressing lane- and non-lane-based traffic dynamics (14). The study effectively identified and 
mitigated congestion by utilising a double-layer ramp-metering model, enhancing overall traffic flow 
efficiency on expressways. Despite such efforts, the existing studies often overlook the significant 
changes in driving behaviour during panic driving conditions among heterogeneous non-lane-based 
traffic. This study worked on that limitation focusing on heterogeneous non-lane-based traffic context. 
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TABLE 1: Wiedemann 99 parameter values in previous studies 

Parameter Default 
value 

Suggested 
value/range 
in literature 

Reference 
 Traffic context 

Range 
used in 
this study 

CC0 
(Standstill 
distance) 

1.5 m 

0.5 to 2.5 
(10) Aggressive driving  

0.2 to 2 
(15) Bottleneck condition 

0.5 to 1.5 (16) Congested traffic 
2.75 (17) Safety analysis 
0.59 (18) Rear-end conflicts 

CC1 
(Gap time 
distribution) 

0.9 s 

0.5 to 1 (19) Congested traffic 

0.5 or 0.9 

0.5 to 1.3 (10) Aggressive driving 

0.5 
(17) Aggressive driving 

(20) Safety analysis 
0.5 to 0.9 (16) Congested traffic 
0.6 (21) Aggressive driving 
0.58 (18) Rear-end conflicts 
0.7 to 1.7 (15) Bottleneck condition 
0.52 (11) Aggressive driving 

CC2 (‘Following’ 
distance 
oscillation) 

4 

2 to 6 (10) Aggressive driving 

2 to 8 
2.92 (18) Rear-end conflicts 

2 to 10 (22) Normal (overtaking 
considered) 

2 to 8 (15) Bottleneck condition 

CC3 (Threshold 
for entering 
‘Following’) 

-8.00 

-4 to -12 (10) Aggressive driving 

-10 to -4 

-4 (11,20) Aggressive driving 
-4 to -15 (19) Congested traffic 
-10 to -5 (15) Bottleneck condition 
-8.34 (18) Rear-end conflicts 
-11.5 (17) Safety analysis 

CC4 (Negative 
speed difference) -0.35 

-0.1 to -1.5 (10) Aggressive driving 

-2 to -0.1 
-0.1 to -2 (19) Congested traffic 
-0.3 (17) Safety analysis 
-0.05 to -1.05 (15) Bottleneck condition 

CC5 (Positive 
speed difference) 0.35 

0.1 to 1.5 (10) Aggressive driving 

0.1 to 2 
0.1 to 2 (19) Congested traffic 
0.3 (17) Safety analysis 
0.05 to 1.05 (15) Bottleneck condition 

CC6 (Distance 
dependency of 
oscillation) 

11.44 

4 to 20 (10) Aggressive driving 

2 to 20 
2 to 20 (19) Congested traffic 
9.21 (18) Rear-end conflicts 
0 to 20 (15) Bottleneck condition 

CC7 (Oscillation 
acceleration) 0.25 

0.15 to 0.4 (10) Aggressive driving 

0.1 to 2.5 
1.12 (11) Aggressive driving 
0.45 (20) Aggressive driving 
0.26 (18) Rear-end conflicts 
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Parameter Default 
value 

Suggested 
value/range 
in literature 

Reference 
 Traffic context 

Range 
used in 
this study 

0.1 to 2.1 (15) Bottleneck condition 

CC8 
(Acceleration 
from standstill) 

3.50 

2.5 to 4.5 (10) Aggressive driving 

0.5 to 3.5 
4 (21) Aggressive driving 
3.42 (18) Rear-end conflicts 
2 to 3.5 (15) Bottleneck condition 

CC9 
(Acceleration at 
80 km/h) 
 

1.5 
 

0.8 to 2.2 (10) Aggressive driving 
0.5 to 2 
 0.5 to 2 (15) Bottleneck condition 

 
METHODOLOGY AND DATA 
The study's methodology is fourfold: i) Network coding in microsimulation software, ii) Sensitivity 
analysis of parameters related to simulating panic behaviour, iii) Generation of emergency scenarios, 
and iv) Design of signal systems (both Static and Adaptive) to determine the most suitable signal for 
emergency conditions. A microsimulation platform, PTV VISSIM, is used to model three 
intersections of Dhaka City, which is the capital of Bangladesh, incorporating both route and vehicle 
dynamics. After calibrating the model, to impart emergency and panic driving, this study explores the 
effect of the Wiedemann 99 Car Following Model Parameters on key performance variables and 
chooses a suitable parameter set through sensitivity analysis. Finally, an evacuation scenario is 
developed by altering traffic routes and two types of signal control strategies, Static Signal & 
Adaptive Signal, are compared to determine the adequacy. The methodology of this study is 
showcased as a flowchart in Figure 1.  
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Figure 1 Methodology Flow Chart 
 
Data Collection 
The study area of this research consists of three intersections of the Dhaka City—Airport Signal, 
Bijoy Sarani Intersection, and Tejgaon Intersection. Airport Signal is a critical junction in Dhaka, 
connecting major roads and enabling significant traffic flow between the northern suburbs and the city 
centre. Bijoy Sarani, a major arterial route, intersects key roads and is strategically located near 
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significant landmarks, including the National Parliament House and the Prime Minister's Office. 
Moreover, the Tejgaon Intersection is also a critical traffic hub in Dhaka, situated in one of the city's 
most industrialised zones. 
Figure 2 provides a Google Earth view of the study area and directions for traffic movement.  
 

 
 
Figure 2: Google Earth View 
 

A traffic video survey was conducted to ensure high-quality data collection of 12-directional 
traffic movements at these intersections. Video cameras with portable chargers and high-capacity 
memory cards were strategically placed to cover all four approaches of each intersection. Seven 
cameras per intersection were deployed to capture vehicle types and movement directions accurately. 
At the same time, drone footages were taken to plot topographical views of the study site which would 
be used for accurate network coding. For example, Figure 3 illustrates the camera setup and locations 
at the Bijoy Sarani intersection. The field survey involved 24-hour video footage collected over a 
week, which included the total of each type of vehicle movement collected every 15 minutes and the 
signal details of each intersection. The peak hour was chosen for further analysis by consolidating 
every hour data of the 7 days and picking the hour which involved the most traffic movement. For this 
study, the peak hour was found to be on Sunday from 6 PM to 7 PM. 
 
 

  
 
Figure 3 Topographic View of Bijoy Sarani with Camera Locations 
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Figure 4 showcases a viewpoint of one of the cameras placed at the Bijoy Sarani Intersection, and 
Figure 5 presents a schematic diagram of the intersections, showing vehicle movement directions and 
peak hour traffic volumes. Observations indicated that private vehicles, including cars, motorcycles, 
and auto rickshaws/CNGs, dominated the traffic, comprising over 85% of vehicles. Private cars were 
the most prevalent mode, exceeding a 30% share on both weekdays and weekends. The share of auto 
rickshaws/CNGs and other non-motorized vehicles varied throughout the survey period. Furthermore, 
data on road geometry, such as lane counts and widths, was also collected for accurate model 
development.  
 

 
 

Figure 4 Typical camera setup  
 

 
 
Figure 5: Schematic diagram of the three intersections  
 
Microsimulation model development & Calibration 
PTV VISSIM was chosen as the microsimulation platform in this study as it has been proven 
user-friendly and has better visual display capabilities (23). Additionally, it performs better than other 
simulating software in modelling complex road networks with traffic control and transit elements 
(24). To develop the microsimulation model, the VISSIM Graphic User Interface (GUI) was utilised 
to draw the whole network of the study area. The topographical data gathered from the surveys are 
input into the model as links and connectors, whereas signal heads and control were used to replicate 
the existing signals. Intermediate points were added to adjust the curves of the streets and data 
collection points were added on the road network for the calibration process. The calibration consisted 
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of two major steps: (i) a Literature review of parameters for similar traffic networks (25, 26) and (ii) 
an Iteration of parameter combinations to find the best parameter set for calibration. After calibration, 
the model was validated using the GEH (Geoffrey E. Havers) statistic (27,28). GEH values under 5 
typically indicate a good fit, but an acceptable value range for a non-lane-based heterogeneous traffic 
mix is up to 10. The traffic flow GEH value of 12 approaches in three intersections from five 
simulation runs varies from 6.1 to 8.92, which is acceptable. Furthermore, while comparing the 
observed and simulated data, the difference in queue length varied from 7.7 to 9.3%, representing the 
model's efficacy. Figure 6 showcases the full simulation network used in this study. 
 

 
 
Figure 6: Microsimulation Model 
 
Sensitivity Analysis of VISSIM Driving Behaviour Parameters 
Based on an extensive literature review, a range of car-following driving behaviour parameters to 
emulate aggressive behaviour during emergencies has been identified. The parameters, CC0-CC9, are 
classified into equidistant values for evaluation purposes. Except for CC1, which has only two logical 
values, all other parameters are divided into five equal intervals. These parameters are assessed based 
on four outputs: Average Headway Time (s), Average Headway Space (m), Average Speed (km/h), 
and Relative Delay (%). While the average speed of the vehicles in the simulation network and the 
relative delay can be directly obtained from VISSIM, average headway time and average headway 
space are calculated separately.  

After obtaining the simulation outputs, this study employed a ranking system to achieve the 
desired aggressive driving parameter set for further analysis. In this system, parameters that yield the 
lowest values for Average Headway Time, Average Headway Space, and Relative Delay are assigned 
the highest rank, as lower values of these metrics indicate more aggressive driving behaviour. 
Conversely, the highest rank is assigned to the lowest value for Average Speed. When setting 
parameter values, one combination is tested while keeping the other parameters at their base 
model-calibrated values. Ranks for each output are calculated, and the combination of values with the 
lowest total rank is selected to represent aggressive behaviour during an emergency evacuation. 
 
Generating Evacuation Scenario 
The three intersections studied in this research are critically important in Dhaka as they connect 
between Dhaka South City Corporation (DSCC) and Dhaka North City Corporation (DNCC). In 
emergencies, this corridor connecting Airplane Signal and Tejgaon Signal is expected to function as a 
key evacuation corridor due to its placement along the borders of two city corporations. Under normal 
conditions, traffic flows in all directions along this route. However, for this study, it is assumed that an 
emergency has occurred in either one of the city corporations, necessitating the exclusive use of this 
route for evacuation.  

To create an evacuation model, after calibrating the behavioural parameters to reflect 
aggressive driving, the traffic flow trajectories are adjusted to ensure that in simulation, all the 
vehicles are moving toward DNCC from DSCC. Additionally, it is assumed that due to a hypothetical 
emergency in DSCC, no traffic from DNCC is flowing in that direction. The traffic flow routes in this 
evacuation scenario are depicted in Figure 7. Consequently, the vehicle inputs and the routes that 
flowed traffic from DSCC to DNCC have been removed. It is important to note that no other physical 
attributes or traffic flow characteristics have been modified to aid the evacuation apart from the 
changes in driving behaviour parameters. 
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Figure 7 Vehicle Route considered for an emergency evacuation scenario 
 
Signal Control Strategies 
This study compares different signal control strategies to evaluate their performances in an evacuation 
scenario. For this comparative analysis, two types of suitable signalling systems are developed and 
implemented in the evacuation model- (i) Static Signal Control and (ii) Adaptive Signal Control. The 
performance of these signals was compared in terms of several performance metrics discussed on the 
next section.  
 
Static Signal Control 
A static signal typically consists of a fixed traffic control device with a predetermined pattern that 
does not change based on real-time traffic conditions. These signals operate on a set schedule with 
fixed intervals for red, yellow, and green lights. In Dhaka, most intersections are manually operated 
by traffic police. It is assumed that in an evacuation scenario, traffic police will adjust signal timings 
according to traffic movement. Since there is no definitive way to simulate manual traffic control in 
VISSIM, it is assumed that signal timings will change based on adjustments made by the traffic 
police. To implement this in the simulation model, the static signal timings are calculated according to 
changes in traffic flow movement in the evacuation model compared to the base model, with phases 
adjusted accordingly. 
 
Adaptive Signal Control 
Adaptive signal control is a dynamic traffic management approach that adjusts traffic signal timings in 
real-time based on current traffic conditions to optimise traffic flow and reduce congestion. In 
VISSIM, adaptive signals can be implemented using the VisVAP module, which facilitates the 
integration and simulation of various adaptive signal control strategies. This involves applying 
adaptive control algorithms that dynamically adjust signal timings and running simulations to evaluate 
and refine the system's performance for optimal traffic management. VisVAP is a tool within PTV 
Vissim that enables the development of signal control algorithms using object-oriented programming 
and flowcharts. It supports the simulation of programmable, vehicle-actuated signal controls by 
allowing users to create and implement logic programs. 

VisVAP needs an ASCII database with a ".pua" extension, which includes details such as the 
number of phases, intergreen matrices, and signal plans. In this study, instead of using the CROSSIG 
add-on, a text editor is employed to create the ".pua" file, backed by previous studies (29,30). The 
control logic is crafted using the VAP (Vehicle Actuated Programming) language in VisVAP, and the 
resulting "*.VAP" file contains the adaptive control algorithm written in C++. For this research, three 
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different intersections were considered, necessitating the creation of three distinct VAP files to 
simulate adaptive signals at each intersection. Each of these adaptive signal designs consisted of three 
phases, and a maximum green time was set to avoid excessively long green times due to persistent 
demands. These files are integrated into VISSIM, which manages the simulation according to the 
defined logic. The system connects traffic detectors and signals to the ".vap" files within the VISSIM 
environment to properly simulate the adaptive traffic control strategy.  
 
RESULTS & DISCUSSION 
 
Sensitivity analysis of car-following parameters 
The study aimed to identify the most sensitive parameters in calibrating simulation models for 
aggressive driving. An analysis of the Wiedemann 99 model's car-following parameters was 
conducted to pinpoint those most significantly indicate aggressive driving behaviour. While the base 
model uses default values, the parameters were adjusted within specified ranges to simulate 
aggressive driving scenarios within the study context. These ranges, derived from existing literature, 
were divided into equal segments, referred to as parameter combinations. 

The study measured four key metrics for each parameter combination, with their variations 
illustrated in Figure 8. 

1.​ Average headway time (seconds) - Lower values suggest aggressive driving, as drivers follow 
other vehicles more closely. 

2.​ Average headway space (meters)—Similar to headway time, lower values indicate a closer 
following, typical of aggressive driving. 

3.​ Average speed (km/h) - Higher speeds indicate aggressive driving behaviour, as drivers 
generally maintain faster speeds. 

4.​ Relative delay (%) - Lower delay values align with aggressive drivers' tendency to minimise 
travel time. 
 

 
 
Figure 8: Metric Variation for Each Parameter 

12 
 



For certain ranges of the parameters CC0, CC2, and CC8, average headway time, average 
headway space, average speed, and relative delay were more variable. This increased variability, 
indicated by longer whiskers in the data, suggests a larger interquartile range (IQR). A larger IQR 
implies that the middle 50% of the data for these parameters is more spread out, indicating greater 
sensitivity in the traffic flow metrics output.  

Each parameter combination, represented in Table 2, was then ranked based on these four 
metrics. The total rank for each combination was calculated by summing the ranks from all metrics. 
Combinations with the lowest total ranks were considered the most representative of aggressive 
driving behaviour, characterised by close following, higher speeds, and reduced delays. 

 
TABLE 2: Parameter Optimization for Aggressive Driving Behaviour 
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Average 
Headway Time 
(s) 

Average 
Headway Space 
(m) 

Average Speed 
(km/h) 

Relative Delay 
(%) 

Total 
Rank 

Selected 
Value 

Values Rank Values Rank Values Rank Values Rank 

CC0 

0.2 3.714 1 1.818 1 7.158 5 32.75 2 9 

0.2 
0.65 3.783 2 2.031 3 7.492 4 34.03 5 14 
1.1 3.933 3 2.004 2 7.821 3 32.95 3 11 
1.55 4.002 4 2.052 4 8.133 2 33.93 4 14 
2 4.083 5 2.229 5 8.532 1 32.17 1 12 

CC1 
0.5 3.651 1 1.98 2 7.623 1 33.48 1 5 

0.5 
0.9 3.748 2 1.848 1 7.397 2 34.08 2 7 

CC2 

2 3.69 1 1.849 1 7.460 2 34.65 5 9 

5 
3.5 3.839 2 1.875 3 7.300 3 33.38 4 12 
5 3.918 3 1.858 2 7.472 1 31.37 2 8 
6.5 4.122 4 1.987 5 7.172 4 32.20 3 16 
8 4.226 5 1.945 4 7.168 5 30.62 1 15 

CC3 

-10 3.779 1 2.052 5 7.397 1 33.78 1 8 

-10 
-8.5 3.831 5 1.695 1 7.376 2 32.94 2 10 
-7 3.788 2 2.01 4 7.360 3 33.83 4 13 
-5.5 3.817 4 1.944 2 7.334 4 33.65 3 13 
-4 3.8 3 1.976 3 7.259 5 34.08 5 16 

CC4 

-2 3.816 3 1.898 3 7.400 1 32.85 1 8 

-2 
-1.52 3.848 5 1.862 1 7.243 4 33.66 2 12 
-1.05 3.8 1 2.023 5 7.304 3 33.79 3 12 
-0.57 3.817 4 1.918 4 7.232 5 34.25 5 18 
-0.1 3.807 2 1.882 2 7.365 2 34.00 4 10 

CC5 

0.1 3.842 5 1.813 1 7.314 3 33.36 1 10 

1.52 
0.57 3.831 4 2.003 3 7.180 5 33.82 5 17 
1.05 3.812 2 2.067 5 7.291 4 33.48 3 14 
1.52 3.746 1 1.898 2 7.456 1 33.61 4 8 
2 3.815 3 2.055 4 7.333 2 33.47 2 11 

CC6 

2 3.749 1 2.069 5 7.394 1 33.88 5 12 

20 
6.5 3.783 2 1.819 1 7.300 3 33.85 4 10 
11 3.853 5 2.037 4 7.237 4 33.83 3 16 
15.5 3.832 4 1.966 3 7.194 5 33.73 2 14 



 
The selected values are aligned with the context of the parameter to represent aggressive driving 
behaviour but do not create highly likely crash situations. The reasoning is given here- 

1.​ CC0 (Average Standstill Distance): 0.2 
This value had the lowest overall rank, indicating it consistently resulted in the shortest 

headway times and distances. This behaviour is typical of aggressive driving, where the driver 
maintains minimal distance from the vehicle ahead. Aggressive drivers tend to stop closer to the 
vehicle in front, reducing the standstill distance. This tendency to follow more closely and reduce 
buffer space even when stopped can lead to a more compact vehicle arrangement at intersections and 
traffic signals​  

2.​ CC1 (Headway Time): 0.5 
This parameter also had the lowest overall rank. A low CC1 value suggests a short-desired 

headway time, which is characteristic of aggressive drivers who prefer to drive closer to the vehicle in 
front. These drivers favour shorter time gaps between vehicles, maintaining closer following 
distances. A lower CC1 value reflects this behaviour by allowing a smaller time gap between vehicles, 
increasing traffic density and flow and reducing reaction time.​  

3.​ CC2 (Following Variation): 5 
The value 5 had a relatively low overall rank, suggesting moderate following variation. This 

indicates that aggressive drivers are somewhat tolerant of speed changes in the vehicle ahead but 
maintain close following distances.  

4.​ CC3 (Threshold for Entering "Following"): -10 
The lowest rank for this parameter indicates aggressive behaviour, as a very negative CC3 

suggests that the driver starts following the leading vehicle even when the speed difference is 
significant. This parameter determines the gap time a driver accepts before following the vehicle 
ahead. A lower CC3 value means that drivers will accept shorter gaps, indicative of more aggressive 
driving behaviour where drivers follow more closely.​ ​ ​ ​  
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Average 
Headway Time 
(s) 

Average 
Headway Space 
(m) 

Average Speed 
(km/h) 

Relative Delay 
(%) 

Total 
Rank 

Selected 
Value 

Values Rank Values Rank Values Rank Values Rank 

20 3.807 3 1.879 2 7.319 2 33.69 1 8 

CC7 

0.1 3.761 1 1.906 4 7.445 1 33.40 2 8 

0.1 
0.7 3.825 2 1.908 5 7.336 2 33.27 1 10 
1.3 3.836 3 1.734 1 7.233 3 33.83 5 12 
1.9 3.848 4 1.848 2 7.179 4 33.65 4 14 
2.5 3.933 5 1.873 3 7.066 5 33.40 3 16 

CC8 

0.5 4.445 5 1.843 2 6.393 5 36.69 5 17 

3.5 
1.25 4.066 4 1.805 1 6.953 4 34.50 4 13 
2 3.903 3 1.894 4 7.127 3 33.92 3 13 
2.75 3.792 1 1.902 5 7.332 2 33.71 2 10 
3.5 3.799 2 1.891 3 7.413 1 33.42 1 7 

CC9 

0.5 3.791 4 1.936 2 7.313 4 33.70 3 13 

1.25 
0.87 3.783 3 2.006 4 7.370 2 32.70 1 10 
1.25 3.768 1 1.875 1 7.334 3 33.64 2 7 
1.62 3.773 2 2.002 3 7.378 1 33.89 4 10 
2 3.835 5 2.022 5 7.227 5 34.28 5 20 



5.​ CC4 (Negative "Following" Threshold): -2 
A low CC4 value with a good total rank suggests aggressive drivers tend to decelerate later 

and less aggressively, indicating a tendency to maintain speed longer before braking.  
6.​ CC5 (Positive "Following" Threshold): 1.52 

This value had a lower total rank, suggesting that aggressive drivers tend to accelerate more 
quickly when the gap with the vehicle ahead increases, indicative of a more aggressive acceleration 
profile. Aggressive drivers tend to drive faster. Increasing CC5, if it affects the desired speed or 
acceleration, would simulate this behaviour by allowing vehicles to reach and maintain higher speeds 
more quickly.​  

7.​ CC6 (Speed Dependency of Oscillation): 20 
The chosen value of 20 had the lowest total rank, indicating that aggressive drivers have less 

fluctuation in their following behaviour with speed changes and prefer steadier following gaps.  
8.​ CC7 (Oscillation Acceleration): 0.1 

This value had the lowest total rank, suggesting that aggressive drivers tend to have minimal 
oscillation in their acceleration, maintaining a steady speed or quickly adjusting to changes in the 
speed of the vehicle ahead. CC7 represents the distance a driver is comfortable maintaining behind the 
vehicle in front, considering the driver's desired level of comfort and safety. Aggressive drivers tend 
to follow more closely, so a lower CC7 value reflects their preference for shorter following distances 
and more compact vehicle arrangements.​ ​ ​ ​ ​ ​  

9.​ CC8 (Standstill Acceleration): 3.5 
The value 3.5 resulted in the lowest total rank, indicating aggressive drivers tend to accelerate 

quickly from a standstill, reflecting a preference for maintaining high speeds and reducing travel time.  
10.​ CC9 (Acceleration at 80 km/h): 1.25 

This value was selected as it had the lowest total rank, suggesting that aggressive drivers have 
a high desired acceleration rate, which aligns with the aggressive driving characteristic of quickly 
reaching higher speeds.  

These selected parameter values describe a driving style that prioritises short headways, quick 
accelerations, and minimal reaction times, all of which indicate aggressive driving behaviour. 
 
Traffic Control Strategy Comparison 
As mentioned in the methodology, two types of traffic control systems (static and adaptive) were 
evaluated in this study to find a suitable approach to tackle aggressive driving behaviour in 
emergencies. The assessment was done concerning the following parameters:  
 
Performance Evaluation Concerning Average Speed 
To assess which traffic control system would perform better in panic conditions, the average speed of 
the vehicles was compared in three different road types (four, three, and two-lane roads and link 
connectors) and three prime intersections of the study area. The analysis shows that in most cases, the 
adaptive signal system results in slightly higher average speeds than static signals, indicating that 
adaptive signals are more efficient in managing traffic flow (Figure 9). Particularly in connectors, this 
control strategy would be significantly more effective. 
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Figure 9 Comparison of Average Speed  
Performance Evaluation Concerning Travel Time 
Travel time was calculated for the eight routes (Figure 10) identified as crucial in an emergency. Due 
to their positional significance, these routes are expected to function as key evacuation corridors. The 
study discovers that, in most cases, the adaptive traffic control system could effectively shorten travel 
time. However, on some routes (Route 7, Route 5), the adaptive signals result in higher travel times, 
suggesting that the adaptive system might not be uniformly effective across all routes. 
 

 
 
Figure 10: Comparison of Travel Time  
 
Performance Evaluation Concerning Total Throughput Traffic 
Another performance evaluation criterion for understanding the overall efficiency of the traffic signal 
control strategies was throughput traffic. The total throughput traffic is the number of vehicles 
successfully reaching the end of the simulation network, which, in this case, is reaching DNCC. 
According to Figure 11, in the first 5 minutes, both systems handle relatively the same traffic volume. 
However, with the passing time, the adaptive signal handles more vehicles in most time intervals, with 
a noticeable peak between 20-25 minutes, where the count reaches close to 900 vehicles. Both 
systems show similar vehicle counts between 31-35 and 41-45 minutes, indicating comparable 
performance during those periods. Overall, static signals tend to manage fewer vehicles compared to 
adaptive signals. The higher throughput under the adaptive signal indicates better traffic flow 
management, reduced congestion, and improved road capacity utilisation.  
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Figure 11: Time Series Plot for Total Throughput  
Performance Evaluation Concerning Key Indicators of Aggressive Driving 
The parameters used to define aggressive driving behaviour were assessed to evaluate static and 
adaptive signals. Additionally, three more parameters, Average Delay, Average Queue Length, and 
Level of Service, were considered for this assessment, with results summarised in a table. The results 
are presented in Table 3. 
 
TABLE 3: Comparison of total volume count under static and adaptive signals 

Performance Metric Static Signal Adaptive Signal 
Headway Space (m) 1.8854738 2.0994673 
Headway time (s) 3.487835 3.438997 
Relative Delay 37.60% 34.34% 
Average Delay 557.6514 519.3556 
Average Queue Length (m) 71.439 66.167 
Level of Service F F 

 
Since lower headway space and headway time imply more aggressive behaviour, the table suggests 
that the adaptive signal shows a slight improvement in headway space (2.09m vs 1.89m) and headway 
time (3.44s vs 3.49s), which could potentially allow better management of aggressive behaviour. 
Though both signal types have a high relative delay (above 34%), the relative delay is slightly lower 
with adaptive signals (34.34%) compared to static signals (37.60%), which could indicate improved 
traffic flow efficiency. Regarding Average Delay and Queue Length, the adaptive signal reduces 
average delay (519s vs 558s) and queue length (66m vs 71m) compared to the static signal. Lastly, 
both signal types have a Level of Service of 'F', the worst possible rating, indicating failing traffic 
conditions with significant congestion and delays. 
 
Overall Performance Comparison 
Overall, the results suggest adaptive traffic signals may lead to slightly better traffic flow than static 
signals. There is a slight improvement in headway space and time, potentially reducing stop-and-go 
traffic. Additionally, the lower relative delay and queue lengths with adaptive signals indicate some 
improvement in traffic efficiency. However, it's important to note that both traffic signal types still 
resulted in significant congestion in this dataset. Thus, selecting a suitable traffic control system will 
depend on the situation and complexity of the traffic dynamics. 
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CONCLUSIONS 
This study aimed to identify the sensitive traffic parameters of the Wiedemann 99 car-following 
model considering panic-induced aggressive driving behaviour and evaluate whether traffic 
police-controlled manual traffic management systems or adaptive signals perform better to manage 
such scenarios during emergencies in a non-lane-based heterogeneous condition. VISSIM was 
calibrated and validated to do the simulation part. Wiedemann 99 car-following model parameters’ 
ranges were adopted from existing literature, and combinations were tested to understand the 
sensitivity of these parameters in an emergency context. The output performance metrics revealed that 
CC0. CC2 and CC8 were more sensitive to forceful driving than other parameters. This study then 
developed an evacuation scenario and tested static and adaptive signals to compare the suitability of 
the signals. The results showed that adaptive signals initially performed better, effectively handling 
the varying traffic conditions. However, as traffic volume increased and roads became saturated, the 
adaptive signals' performance declined, ultimately behaving similarly to static signals due to the 
formation of large queues. This indicates that while adaptive signals have potential, their effectiveness 
is limited under extreme traffic conditions. During Bangladesh’s first Strategic Transport Plan (STP) 
in 2005, the v/c ratio of Dhaka was found to be 1.2. With little capacity enrichment and an increase in 
vehicle registration, the v/c of Dhaka is predicted to be manifold in 2024. Therefore, this study 
suggests that to tackle emergency traffic scenarios in such conditions, it may not be wise to always 
depend on adaptive traffic systems. The manual traffic control maintained by traffic police may better 
manage traffic flow in critical situations. This approach applies particularly to developing countries 
where lane discipline is often not followed, and traffic consists of heterogeneous travel modes.  

The framework developed in this study is highly adaptable. It can be easily applied to various 
intersection types and traffic scenarios, making it a valuable tool for traffic management research and 
applications. Further research directives should concentrate on more extensive testing across different 
intersection types and scenarios to validate and refine the findings. 
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