
An improved hyperelasticity relation in modeling
viscoelasticity response of natural and high damping rubbers

in compression: experiments, parameter identification
and numerical verification

A.F.M.S. Amin 1, M.S. Alam, Y. Okui *

Department of Civil and Environmental Engineering, 255 Shimo Okubo, Saitama University, Saitama 338-8570, Japan

Received 30 July 2001

Abstract

The rate-dependent behavior of natural and high damping rubbers is investigated in the compression regime. The

experimental results demonstrate the prominence of the rate-dependent high initial stiffness feature in high damping

rubber at low stretch level. A modified hyperelastic model is proposed to represent the rate-independent elastic re-

sponses including the high initial stiffness feature. A comparative evaluation is carried out to display the better per-

formance of the proposed hyperelastic model than conventional ones over the strain range in representing the

equilibrium and the instantaneous responses. The hyperelastic model is incorporated in a finite deformation rate-de-

pendent model structure. A parameter identification scheme is proposed to identify the parameters for the equilibrium

and instantaneous responses from the experimental data. The difficulties of direct application of infinitely fast or slow

loading rate to such highly viscous materials to obtain these responses and thereby to identify the nonlinear elastic

parameters are overcome. The proposed scheme is applied to three types of specimens including natural rubber and

high damping rubber. Finally, numerical results obtained from the finite deformation rate-dependent model are

compared with the test results to verify the adequacy and robustness of the proposed parameter identification

scheme. � 2002 Elsevier Science Ltd. All rights reserved.

Keywords:Natural rubber; High damping rubber; High initial stiffness; Hyperelasticity; Equilibrium response; Instantaneous response;

Viscoelasticity

1. Introduction

Vulcanized natural rubber (NR) has wide en-
gineering applications such as shock absorbers,
tunnel linings, bridge and building bearings, wind
shoes, etc. (Ward, 1985; Roeder and Stanton,
1983). Furthermore, high damping rubber (HDR)
has been developed for specific applications in base
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isolation bearings to protect structures from
earthquakes (Kelly, 1997) and vibrations (Castel-
lani et al., 1998). The mechanical behavior of these
rubbers is dominated by nonlinear rate-dependent
response (Aklonis et al., 1972) that includes other
inelastic behavior such as Mullins’ effect (Mullins,
1969) and hysteresis (Gent, 1962). These effects are
said to be more evident in HDR. Hence, to re-
produce the general mechanical behavior of NR
and HDR under cyclic loading, there is necessity
to develop a constitutive model that can simulate
the rate-dependent nonlinear response including
hysteresis. Although the final goal of this research
is towards constructing a constitutive model rep-
resenting all these aspects, as the first step, this
paper focuses on modeling of the nonlinear vi-
scoelastic behavior.
Fig. 1 presents a schematic representation of

typical rate-dependent responses obtained from a
viscoelastic solid. When the viscoelastic solid is
loaded at an infinitely slow rate, the stress-strain
curve follows the E–E0 path. This behavior is
called the equilibrium response. On the other
hand, in the case of infinitely fast loading, the re-
sponse takes the I–I0 path. Such a response is
known as the instantaneous response (Huber and
Tsakmakis, 2000). Both equilibrium and instan-
taneous responses are elastic and they bind the
viscosity domain. The area of viscous domain is
directly related to the extent of material viscosity.
Hence, one of the ways to develop a physically

meaningful constitutive model is to include pa-
rameters that will directly express the instanta-
neous and equilibrium behaviors of the material.
In this context, a standard three-parameter paral-
lel model as illustrated in Fig. 2 can be considered.
In such a physically motivated model, the first
branch comprising of a spring (Element A) repre-
sents the equilibrium response, while the second
branch comprising of a spring (Element B) and a
dashpot (Element C) represents the ‘overstress’
feature resulting from the rate-dependent effect. In
contrast to a constitutive model of linear visco-
elasticity, however, nonlinear spring elements are
required to represent the nonlinear equilibrium
and instantaneous responses obtained from rub-
bers. In this context, an adequate hyperelastic
model is vital to describe these two elastic
boundary responses (Bonet and Wood, 1997).
Historically, the large extension feature of

rubbery materials motivated researchers over de-
cades to express the associated nonlinear elastic
behavior through hyperelastic models (Charlton
et al., 1993). Naturally, while formulating these
relations, attention was paid mostly towards
modeling of the response in the large strain tension
regime. Among these conventional hyperelasticity
models, strain-invariant based Mooney–Rivlin
model (Mooney, 1940; Rivlin, 1948) is the oldest
one. It performs only well up to moderate exten-
sion range, but cannot represent the strain-hard-
ening feature typically exhibited by rubbers at a
large strain level. Subsequently, Hart-Smith
(1966), Alexander (1968), Yeoh (1990), Arruda

Fig. 1. Typical responses from a viscoelastic solid. Fig. 2. Three-parameter parallel model.
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and Boyce (1993), Yamashita and Kawabata
(1992) proposed other improved models to include
such a feature. Furthermore, stretch based models
(Ogden, 1984; Peng and Landel, 1972) were also
formulated. However, the performance of these
models in representing compression response of
NR is not yet investigated thoroughly. Besides this
aspect, compared with NR, only limited experi-
mental data on HDR have so far been reported
(Dorfmann and Burtscher, 2000; Kelly, 1997;
Hernandez, 1998). In general, HDR exhibits
stronger nonlinearity at low strain levels. How-
ever, any study is yet to appear on the applicability
of conventional hyperelastic relations to model
HDR.
Moreover, in modeling viscoelastic response of

rubbers, another obscurity exists in the parameter
identification procedure. Figs. 1 and 2 have illus-
trated the definitions and roles of the equilibrium
and instantaneous responses in a typical visco-
elastic solid and material model. Yet, there are
experimental limitations in applying infinitely slow
or fast loading on a specimen to arrive at the
equilibrium and instantaneous states, especially in
case of highly viscous rubber-like materials. In this
connection, the models of Lion (1996, 1997),
Bergstrom and Boyce (1998), Miehe and Keck
(2000) can be referred to where there exist direct
references of the equilibrium and instantaneous
states through the overstress concept. However,
they had to depend on the numerical trials to
identify the elasticity and viscosity parameters on
the basis of the data of the experiments which were
carried out at the middle of viscous domain. The
parameters identified in this way, however, lose
their physical meaning. On the other hand, Huber
and Tsakmakis (2000) presented a formulation of
finite deformation viscoelasticity laws that in-
cluded direct expression of the equilibrium and
instantaneous states. However, such theoretical
work does not present any parameter identifica-
tion procedure.
With this background, this paper presents an

improved hyperelastic relation to represent non-
linear elastic response of NR and HDR in uniaxial
compression. The relation is capable of including
the initial stiffness feature present in the equilib-
rium and instantaneous states of the materials.

The new hyperelastic relation is incorporated in a
finite deformation rate-dependent model structure,
and a rate-dependent constitutive model is thereby
derived. Furthermore, a parameter identification
scheme is proposed to identify the parameters for
the equilibrium and instantaneous responses from
direct experimental observation. The scheme is
applied on two different kinds of NRs and a HDR
in order to observe the fundamental viscoelastic
behavior of each material under compression and
thereby to check the applicability of the proposed
scheme under varied material types. In this course,
the finite deformation viscoelasticity model is
considered for determining the viscosity parameter
from the experimental data. The performances of
the conventional and the proposed hyperelastic
models in representing equilibrium and instanta-
neous responses are compared. Finally, the ade-
quacy of the proposed model and parameter
identification scheme is verified by comparing ex-
perimental data with numerical results obtained
from the finite deformation rate-dependent model
using identified elasticity and viscosity parameters.

2. Experimental observation

In order to study the fundamental viscoelastic
behavior of NR and HDR, an experimental
scheme was applied on each of the three specimen
types. The scheme comprises of a multi-step re-
laxation test, monotonic compression tests and
simple relaxation tests. The tests were carried out
in compression regime. To separate the Mullins’
effect from the rate-dependent phenomena, pre-
loading was applied on each specimen prior to the
actual test. The following subsections present the
details of the experiments.

2.1. Specimens

In the present study two different types of NR
and a HDR were investigated. Table 1 presents the
details of the specimens.
Apart from the difference in origin and end use,

the microstructure of all these specimens also dif-
fers from each other. Fig. 3 shows the comparative
microstructure of the specimens as visualized from
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scanning electron microscope (SEM) observation.
The observation was made in a Jeol JSM 5600LV
machine. The SEM images illustrate a void dom-
inated microstructure of NR-I in contrast to NR-
II and HDR,where the occurrence of voids is rare.

2.2. Experimental set-up

A schematic detail of the experimental set-up is
presented in Fig. 4. The specimens were tested in a

computer-controlled servo-hydraulic testing ma-
chine by using Shimadzu servo-pulser 4800 at
room temperature. Displacement controlled tests
in compression were carried out. The displacement
was applied along the vertical axis of the specimen
and a load cell measured the corresponding force.
All data were recorded using a personal computer.
In order to reduce the friction between sample and
the plate and thereby to ensure a homogeneous
deformation in the specimen, polypropylene films

Table 1

Details of the specimens

Specimen designation

NR-I NR-II HDR

Type Natural rubber Natural rubber High damping rubber

Application General purpose Bridge bearing Bridge bearing

Manufacturer Shinoda Rubber Co. Yokohama Rubber Co. Yokohama Rubber Co.

Strength 4.0 MPaa 0.98 MPab 0.78 MPab

Shape Cubic Cylindrical Cylindrical

Size H : 50 mm, L: 50 mm, W : 50 mm H : 41 mm, D: 49 mm H : 41 mm, D: 49 mm

H : height, L: length, W : width, D: diameter.
a Tensile strength.
b Shear modulus tested according to JIS K 6301.

Fig. 3. Micro-graphs of: (a) NR-I; (b) NR-II; (c) HDR.
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with lubricant on the top and at the bottom of the
sample were used. Fig. 5 illustrates the deforma-
tion homogeneity of a specimen that was ensured
around 50% compressive strain level.

In general, rubbers are assumed to be incom-
pressible materials. The Cauchy stress (true stress)
can therefore be readily calculated from this as-
sumption (Peeters and Kussner, 1999). However,
SEM observations of the specimens of the present
investigation have indicated the presence of micro-
voids. Hence to verify the assumption, the lateral
displacement of the specimens was measured. A
laser transducer (Ono Sokki LD-1110M-020) was
used to measure the mid-height lateral displace-
ment of the specimen surface. In fact, due to the
very large applied vertical displacement (resulting
up to 50% compressive strain), the midpoint of the
specimen surface shifts significantly in the vertical
direction from its initial position. To overcome
this problem and to catch the midpoint of the
deformed specimen, a special type of jig with a
boom device was used to synchronize the position
of the laser transducer with the applied displace-

Fig. 4. Experimental set-up: (a) elevation; (b) section A–A.

Fig. 5. Deformation homogeneity of HDR attained at 50%

compressive strain.
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ment. Fig. 6 presents the measured Cauchy stress
vs. applied stretch (i.e. 1þ dL=L, where L is the
undeformed length) response in comparison with
that obtained by using the incompressibility as-
sumption in NR-I. At a higher stretch level, there
appears a little difference between the Cauchy
stresses based on the measured lateral displace-
ment and that obtained from the incompressibility
assumption. However, the lateral displacement
measurement indicates good reasoning for em-
ploying the incompressibility assumption. From
now on in this paper, the applied stretch and the
Cauchy stress of each test will be calculated under
the assumptions of homogeneous deformation and
incompressibility of the specimens.

2.3. Mullins’ effect and preloading

Virgin rubber typically exhibits a softening
phenomenon, known as Mullins’ effect (Mullins,
1969) in the first loading cycle. The stress response
depends on the past maximum strain. Mullins’
effect was found to be present in all the specimens
at the virgin state. Fig. 7 shows the relationship
between the Cauchy stress and the stretch ob-
served in the virgin NR-I. In order to remove
Mullins’ effect as well as obtain stable material
behavior, all virgin specimens were subjected to a
specified preloading sequence prior to actual tests.
This approach of removing Mullins’ effect from
other phenomena is conceptually similar to that of
Yeoh (1990), Yamashita and Kawabata (1992),
Lion (1996, 1997), Bergstrom and Boyce (1998)
and Miehe and Keck (2000). In the preloading,

each virgin specimen was subjected to cyclic uni-
axial compressive loading for 5 cycles at 0.5
maximum stretch level with a stretch rate of 0.01/s.
Fig. 8 presents typical stress–stretch responses

obtained from pre-loading tests for NR-I, NR-II
and HDR. The softening behavior in the first
loading cycle is evident from the figure. In NR-I
and HDR, the softening behavior is more pro-
nounced than that in the NR-II. All the specimens
showed a repeatable stress–stretch response after
passing through 2–3 loading cycles. However,
Mullins’ softening effect in a specimen recovers
slowly with time. It is known as the ‘healing effect’
(Bueche, 1961). To keep this healing effect con-
stant for each specimen, 20 min time interval was
maintained between the pre-loading and the actual
test for each specimen as described in the following
sections. Apart from Mullins’ effect, the typical
strain-hardening feature of virgin rubbers at
higher strain levels is more visible in NR-I and
HDR than that in the NR-II.

2.4. Multi-step relaxation test

Fig. 1 presented the definition of the equilib-
rium response that can be obtained when the
material is loaded at an infinitely slow rate.
However, in rubbers, the presence of a significant,
but unknown extent of material viscosity makes it
difficult to specify a loading rate that is slow en-
ough for obtaining the equilibrium response. To
overcome this problem, a multi-step relaxation test
was employed in this study to obtain the equilib-
rium response. This approach eliminates the

Fig. 7. Typical Mullins effect observed in NR-I.
Fig. 6. Verification of incompressibility assumption through

lateral displacement measurement in NR-I.

80 A.F.M.S. Amin et al. / Mechanics of Materials 34 (2002) 75–95



necessity of performing uniaxial test trials in
specifying a slow loading rate. In the present
study, NR-I, NR-II, and HDR were tested up to
0.55, 0.50 and 0.50 stretch levels, respectively. Fig.
9 presents the applied stretch and the resultant
stress histories of the tests. It is observed that at
the end of each relaxation interval of 10 min du-
ration, each stress history converges to an almost
constant state in all specimens. Although the
equilibrium state can be achieved only in an as-
ymptotic sense, the stress states invariably indicate
the neighborhood of the equilibrium states. In a
consideration similar to Lion (1996, 1997), these
stress states are regarded as the equilibrium states
at respective stretch levels.

2.5. Monotonic compression test

The instantaneous elastic response of a solid is
ideally obtained when the material is loaded at
infinitely fast rate (Fig. 1). From an experimental
point of view, however, there exists a finite maxi-
mum value of stroke rate for any displacement
controlled loading device. Although, the use of a
smaller specimen dimension in the loading direc-

tion can increase the loading rate on a specimen,
the reduced aspect ratio of the specimen increases
the boundary effects on the other turn. Hence, to
find out a method for estimating the instantaneous
response, a series of monotonic compression tests
were conducted. The tests were carried out at dif-
ferent constant strain rates up to 0.5 stretch level.
In the test series, a number of constant stretch-rate
cases within the range 0.001–0.96 s�1 were con-
sidered.
Fig. 10 shows the rate-dependent Cauchy

stress–stretch responses that were observed in six
stretch rate cases for NR-I and four stretch rate
cases for each of the other two specimens. In
general, the stress responses contain a threefold
feature, which is high initial stiffness at a low strain
level followed by noticeable large compressibility
at moderate strain and large-strain hardening at
the end part. These observations will be discussed
once again in Section 3.1 to derive an adequate
hyperelastic relation to represent all these aspects.
When compared among the three specimens, the
high initial stiffness at the low stretch level is the
most prominent in HDR at higher stretch rate.
The cause of such characteristic nonlinearity is

Fig. 8. Applied stretch history and stretch–stress response observed in pre-loading: (a) NR-I, (b) NR-II, (c) HDR.
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attributed to the presence of very high amount of
fillers added to produce HDR (Kelly, 1997;
Dorfmann and Burtscher, 2000). However, a
weaker strain hardening feature in NR-II than that
of the other two specimens at higher stretch levels
is also noticeable.
A further comparison of the responses at dif-

ferent stretch rates for each specimen shows that,
with increasing stretch rate, the stresses increase
due to viscosity effect. At higher stretch rates,
however, a diminishing trend in the increase of
stress response was observed indicating the ap-
proach of an instantaneous state in all specimens.
Hence, for NR-I and HDR, the stress responses
obtained at more than 0.47/s stretch rate can be

considered as the neighborhood of the instanta-
neous state. For NR-II, the corresponding stretch
rate is 0.075/s. The observation of viscosity induced
rate-dependent phenomenon in rubbers under
monotonic loading was also reported in the works
of Lion (1996, 1997); Bergstrom and Boyce (1998);
Miehe and Keck (2000). However, these observa-
tions could not identify the existence of instanta-
neous state. In contrast, the present experimental
work reports the observation of such fundamental
viscoelastic phenomenon in NR and HDR.
To illustrate the existence and extent of viscous

domain in each material, the equilibrium loci ob-
tained from Section 2.4 were compared here with
the experimental results of monotonic compres-

Fig. 9. Applied stretch history and stretch–stress response observed in multi-step relaxation test: (a) NR-I, (b) NR-II, (c) HDR.
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sion tests. The locus plotted in Fig. 10 represents
the equilibrium state boundary of the viscous do-
main for each material. Comparisons of the Fig.
10(a)–(c) show that the equilibrium loci estimated
for all the specimens are comparable. However,
the stress response of NR-II at faster stretch rates
is much lower than those of NR-I and HDR. This
results in a much smaller viscous domain for NR-
II characterizing low material viscosity. The
striking difference in viscoelasticity property in
NR-I and NR-II can be related to the presence of
voids in the microstructure of NR-I.

2.6. Simple relaxation test

The multi-step relaxation test and the mono-
tonic compression tests described in Sections 2.4

and 2.5 enabled to estimate the instantaneous and
the equilibrium responses. The remaining problem
is to characterize the viscosity property. To this
end, a series of simple relaxation tests at different
stretch levels were carried out. In this course, a
stretch rate of 0.5/s followed by a hold time of 10
min was used in all the tests described in this sec-
tion.
Fig. 11 shows the stress histories obtained from

the tests on NR-I at 0.7 stretch, and on NR-II and
HDR at 0.5 stretch level. For NR-I and HDR,
rapid stress relaxation was displayed in the first 2
min of hold time after which it approached as-
ymptotically towards an equilibrium state within
next 2 min. The amount of stress relaxation of
NR-II was found much lower than that of the
other specimens. The smaller area of viscous do-

Fig. 10. Comparison of monotonic compression test stretch–stress responses at different stretch rates along with the equilibrium locus:

(a) NR-I, (b) NR-II, (c) HDR.
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main as observed in NR-II (Fig. 10(b)) has a direct
conformity with this stress relaxation test result.
This observation conforms to the viscous domain
characteristics of the material as mentioned in
Section 2.5. However, the amount of stress relax-
ation in each specimen was found not to vary with
the change of stretch levels. The simple relaxation
tests at other but different stretch levels have
confirmed this fact. For space limitation of this
paper, presentation of those data is being skipped.

3. Constitutive modeling

The experimental observation (summarized in
Section 2) revealed a strong nonlinearity in mono-
tonic response along with significant strain-rate
dependency feature. Typically, hyperelastic model
are used to represent the response of rubbers at a
particular strain rate assuming complete elastic re-
covery of the material (Bonet and Wood, 1997).
However, in order to model the rate dependency,
the hyperelastic models are required to be com-
bined with a rate-dependent model (Fig. 2) to rep-
resent the equilibrium and instantaneous responses.
To this end, this section proposes a hyperelastic

model and its incorporation into a rate-dependent
model structure to derive the final model.

3.1. Hyperelasticity for equilibrium and instanta-
neous responses

For isotropic elastic materials, the strain energy
function W can be expressed as a function of in-
variants of a deformation tensor Ii ði ¼ 1; 2; 3Þ,
W ¼ W ðI1; I2; I3Þ: ð1Þ
If the left Cauchy–Green deformation tensor B is
employed as the deformation tensor, the defor-
mation invariants can be rewritten in terms of the
principal stretches ki ði ¼ 1; 2; 3Þ,

I1 ¼ trB ¼ k21 þ k22 þ k23;

I2 ¼ 1
2
ðtrBÞ2

n
� trðBBÞ

o
¼ ðk1k2Þ2 þ ðk2k3Þ2 þ ðk3k1Þ2;

I3 ¼ detB ¼ ðk1k2k3Þ2:

ð2Þ

When the material is incompressible, the third in-
variant I3 ¼ 1, and W is represented as a function
of I1 and I2 only,

W ¼ W ðI1; I2Þ: ð3Þ

Fig. 11. Stress history obtained from simple relaxation test: (a) NR-I, (b) NR-II, (c) HDR.
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From Truesdell and Noll (1992), it follows that the
Cauchy stress T is expressed as

T ¼ �p1þ TE; ð4Þ

TE ¼ 2 oW
oI1

B� 2 oW
oI2

B�1; ð5Þ

where 1 is the identity tensor, p is the hydrostatic
pressure, and the subscript ‘E’ denotes the devia-
toric part.
From Eqs. (1)–(5) it becomes clear that the

representation of incompressible hyperelastic ma-
terial behavior is solely dependent on the definition
of W ðI1; I2Þ.
However, due to the strong dependence of the

stress response on the state of strain, experiments
are required to identify an adequate form of W . In
this context, tests in uniaxial tension/compression,
bi-axial tension and pure shear deformation modes
were proposed in the early works of Rivlin and
Saunders (1951). The main motivation of con-
ducting tests at different deformation modes was
to come up with a W function that is adequate
enough in predicting material behavior in different
deformation modes. Kawabata and Kawai (1977)
and Kawabata et al. (1981) investigated the de-
pendence of oW =dI1 and oW =dI2 on I1 and I2 using
uniaxial and biaxial test data. They showed that
oW =dI1 and oW =dI2 depend only on I1 and I2, re-
spectively. This led to the separation ofW into two
individual functions namely f ðI1Þ and gðI2Þ

W ðI1; I2Þ ¼
Z

f ðI1ÞdI1 þ
Z

gðI2ÞdI2; ð6Þ

where

f ðI1Þ ¼
oW
oI1

; gðI2Þ ¼
oW
oI2

:

Lambert-Diani and Rey (1999) further considered
this notion to propose a general procedure for
identifying the strain energy density function. In
their work, the effect of the maximum principal
stretch, k1 on the values of I1 and I2 in uniaxial
tension, pure shear and equi-biaxial tension modes
were considered. It was concluded there that an
experiment with either k1 > 1 or k2 > 1 is sufficient
to determine f ðI1Þ. However, they clarified the
necessity of an biaxial experiment with k1 > 1 and
k2 > 1 for obtaining gðI2Þ. As far as the prediction

of incompressible uniaxial deformation is con-
cerned, it can be seen that from the condition of
incompressibility, I3 ¼ 1 gives k2 ¼ k3 ¼ k�1=2

1 .
Therefore, for uniaxial compression, k1 < 1:0 gives
k2 > 1:0 which is the sufficient condition to deter-
mine f ðI1Þ as proposed by Lambert-Diani and
Rey. In this paper, this condition has been utilized
to modify the Yamashita and Kawabata (1992)
model and thereby to propose the strain energy
function in terms of I1 for NR and HDR in uni-
axial compression. Eq. (7) presents the proposed
strain energy density relation as a function of I1

W ðI1Þ ¼ C5ðI1 � 3Þ þ
C3

N þ 1 ðI1 � 3Þ
Nþ1

þ C4
M þ 1 ðI1 � 3Þ

Mþ1
; ð7Þ

where C5; C3; C4; M , and N are material param-
eters with N P 1:0 and 0:06M 6 1:0. For uniaxial
incompressible deformation, the expression of T11E
for the proposed function can be derived from Eq.
(5) as

T11E ¼ 2 k21

�
� 1

k1

�
C5
�

þ C3ðI1 � 3ÞN

þ C4ðI1 � 3ÞM
�
: ð8Þ

It should be noted that the first term with coeffi-
cient C5 is a component of original Mooney–Rivlin
model (Mooney, 1940; Rivlin, 1948), while the
term with C3 and N coefficients was proposed by
Yamashita and Kawabata to include the harden-
ing feature observed at higher strain levels. In or-
der to incorporate the initial stiffness part, we
propose the incorporation of the third term asso-
ciated with coefficient C4 and M .
The hyperelasticity model proposed in this

section will be used in the following section to
describe the equilibrium and instantaneous re-
sponses in a viscoelasticity model. The identifica-
tion of equilibrium and instantaneous responses
from experimental data will be discussed in Section
4 together with their representation through the
proposed hyperelasticity model.

3.2. Viscoelasticity modeling

Section 3.1 has introduced a hyperelasticity
model to represent the elastic response obtained
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from rubbers in uniaxial compression. In order to
model the strain-rate dependency of NR and
HDR, the proposed hyperelasticity relation will be
employed to describe the equilibrium and instan-
taneous state boundaries that exist in the responses
of any typical viscoelastic solid illustrated in Fig.
1. The total stress is decomposed into the equi-
librium and viscosity induced overstress parts fol-
lowing the concept of the three parameter parallel
model as shown in Fig. 2. The deformation gra-
dient tensor F is decomposed into F ¼ FeFi, where
Fe and Fi are the deformation gradients associated
with ee and ei, respectively. Similar approaches in
the decomposition of deformation were also em-
ployed by Lubliner (1985), Le Tallac et al. (1993),
Reese and Govindjee (1998), Huber and Tsakma-
kis (2000). In this decomposition Fi component
introduces an intermediate equilibrium configura-
tion. The intermediate configuration is resulted,
when the stress is unloaded at an infinitely fast rate
to an equilibrium state keeping the value of Fi at
constant during the unloading process.
From the model structure shown in Fig. 2, the

deviatoric part of the Cauchy stress tensor, TE can
be decomposed into equilibrium part T

ðEÞ
E and the

overstress part T
ðOEÞ
E

TE ¼ T
ðEÞ
E þ T

ðOEÞ
E ; ð9Þ

with

T
ðEÞ
E ¼ 2 oW

ðEÞ

oI1B
B� 2 oW

ðEÞ

oI2B
B�1; ð10Þ

T
ðOEÞ
E ¼ 2 oW

ðOEÞ

oI1Be
Be � 2

oW ðOEÞ

oI2Be
B�1
e ; ð11Þ

where Be ¼ FeF
T
e , and I1B and I2B are the first and

second invariant of B. The subscript ‘e’ denotes the
quantities related to Fe.
From Huber and Tsakmakis (2000), the rate of

left Cauchy–Green deformation tensor for the
considered model is given by

_BBe ¼ BeL
T þ LBe �

2

g
Be TE

�
� T

ðEÞ
E

	
; ð12Þ

L ¼ _FFF�1; ð13Þ
where L is the velocity gradient tensor. The ð�Þ
indicates the material time derivative. g is the
material viscosity represented by the dash-pot.
Substituting the proposed strain energy density

function, Eq. (7) into Eqs. (9)–(12), we have the
explicit expressions for T and the rate of Be,

T ¼ �p1þ 2CðEÞ
5 Bþ 2CðEÞ

3 ðI1B � 3ÞN
ðEÞ
B

þ 2CðEÞ
4 ðI1B � 3ÞM

ðEÞ
Bþ 2CðOEÞ

5 Be

þ 2CðOEÞ
3 ðI1B � 3ÞN

ðOEÞ
Be

þ 2CðOEÞ
4 ðI1B � 3ÞM

ðOEÞ
Be; ð14Þ

_BBe ¼ BeL
T þ LBe

� 4
g
Be CðOEÞ

5 Be

�
þ CðOEÞ

3 ðI1B � 3ÞN
ðOEÞ

Be

�CðOEÞ
4 ðI1B � 3ÞM

ðOEÞ
Be

	
: ð15Þ

The material parameters of the proposed model
expressed in Eqs. (14) and (15) are summarized in
Table 2.

4. Parameter identification

The experimental observations of Section 2
have revealed the viscoelastic property of NR and
HDR, while Section 3 has presented a constitutive
model derived from physical viewpoint of material
behavior. At this stage, the interest of the work
focuses on identifying the model parameters in an
explicit way based on the experimental data. The
following sections present the details of the pro-
posed parameter identification scheme.

Table 2

Material parameters

Response components Material parameters

Equilibrium stress CðEÞ
5 CðEÞ

3 CðEÞ
4 M ðEÞ N ðEÞ

Overstress CðOEÞ
5 CðOEÞ

3 CðOEÞ
4 M ðOEÞ N ðOEÞ

Viscosity g
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4.1. Elasticity parameters

4.1.1. Equilibrium response
The introduction of multi-step relaxation tests

in Section 2.4 has eliminated the problems and
subsequent uncertainties associated with specify-
ing a slow loading rate on a rubbery material with
unknown viscosity, and thereby to approximate
the equilibrium locus (Fig. 10). At this point, the
coefficients of the hyperelasticity relation (Eqs.
(13) and (14) and Table 2) for the locus can be
readily determined by a least- squares method. The
values of the parameters are listed in Tables 3–5
for NR-I, NR-II, and HDR, respectively. Fig. 12
illustrates the representation of equilibrium locus
by the hyperelasticity model. The adequate repre-
sentation of the response at all stretch levels is
evident.

4.1.2. Instantaneous response
The monotonic compression tests presented in

Section 2.5 displayed a diminishing trend in the
increase of the stress response at higher stretch
rates indicating the approach of the instantaneous
state. Interestingly, the overall stress-stretch re-
sponse at each stretch rate has a characteristic
curve, which can be described by the hyperelas-

ticity model. On the basis of this feature, the
constants, i.e. C5; C4, and C3 were determined for
each monotonic compression test with different
stretch rates ranging from 0.001/s to 0.96/s. In the
Cauchy stress-stretch relation of the hyperelastic-
ity model (Eq. (8)), each contribution from the
second and third terms is related to two parame-
ters, i.e. C3, N and C4, M , respectively. However,
the values of M and N have a weaker sensitivity on
the whole relation. Hence, constant values of M
and N as determined from the equilibrium locus of
each material were used for determining C3 and C4
parameters. The C5; C3, and C4 parameters de-
termined by this procedure are plotted in Fig. 13
against the corresponding stretch rate values.
It is interesting to note that the values of C5; C3

and C4 parameters (Fig. 13) follow an asymptotic
trend with the increase of applied stretch rate. This
must be due to the approach of the instantaneous
state. For NR-I, such a feature is noticed over a
stretch rate of 0.25/s, while for NR-II the corre-
sponding stretch rate is 0.1/s. For HDR it is
around 0.7/s. The parameters for the instanta-
neous response are estimated from this asymptotic
trend within finite stretch rate region. The values
obtained from the highest stretch rate case in each
specimen and denoted by X1; X2 and X3 (Fig. 13)

Table 5

Elastic material parameters (HDR)

Responses C5 (MPa) C3 (MPa) C4 (MPa) M N

Equilibrium 0.79 0.18 )0.55 0.25 1.00

Instantaneous 2.35 0.74 )2.28 0.25 1.00

Table 4

Elastic material parameters (NR-II)

Responses C5 (MPa) C3 (MPa) C4 (MPa) M N

Equilibrium 0.67 0.07 )0.31 0.25 1.00

Instantaneous 1.04 0.22 )0.68 0.25 1.00

Table 3

Elastic material parameters (NR-I)

Responses C5 (MPa) C3 (MPa) C4 (MPa) M N

Equilibrium 0.99 0.40 )0.89 0.25 1.00

Instantaneous 1.89 0.86 )1.80 0.25 1.00
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were taken for representing the instantaneous re-
sponse. The values are presented in Tables 3–5.
The subtraction of the values of C5; C3 and C4
from the instantaneous to the equilibrium state

gives the parameter values for the overstress re-
sponse as mentioned in Table 2. Fig. 12 illustrates
the representation of instantaneous response by
the proposed hyperelasticity model where a good

Fig. 12. Comparative representation of equilibrium and instantaneous response by the proposed hyperelastic model. ð�Þ Equilibrium
response obtained from experiment, (	) instantaneous response obtained from experiment, ð–Þ proposed hyperelastic model repre-
sentation: (a) NR-I, (b) NR-II, (c) HDR.

Fig. 13. Best-fit hypereleasticity coefficients for monotonic compression tests with different stretch rates: (a) C5, (b) C3, (c) C4 values.
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representation over the stretch range can be ob-
served. The good performance of the model in
capturing the high initial stiffness feature can be
well noted.

4.2. Viscosity

The determination of elastic parameters com-
pletes the representation of the boundary of vis-
cous domain and leaves the material viscosity g
(Fig. 2) as the only unknown. In this situation, the
results of simple relaxation tests were utilized
(Section 2.6) to evaluate the viscosity parameter. In
these tests, the loading stretch rate for each speci-
mens were maintained at 0.5/s, which is in the
neighborhood of instantaneous states for all
the materials (Section 4.1.2). In this situation, all
the tests presented in Section 2.6 illustrate the
fundamental stress relaxation phenomena of the
materials from the instantaneous to the equilib-
rium state and thus include the entire viscosity

domain. To find an adequate value of g, numerical
trials of the rate-dependent hyperelastic model
(Section 3.2) were carried out and experimental
data were compared with those of numerical re-
sults. For NR-I and NR-II, g ¼ 4:20 and 3.50 MPa
s were found to represent the relaxation feature
adequately (Fig. 14(a) and (b)). In HDR, the cor-
responding value was 3.00 MPa s (Fig. 14(c)).

5. Performance evaluation and discussion

An improved hyperelastic relation has been
presented in Section 3.1 and the new relation has
been incorporated in a rate-dependent model
structure in Section 3.2. On the basis of the ex-
perimental observation presented in Section 2, a
physically meaningful parameter identification
scheme has been presented in Section 4. In this
section, the proposed hyperelastic model is com-
pared with conventional ones in representing

Fig. 14. Estimation of viscosity parameter by simulating the simple relaxation test result: ð–Þ numerical simulation, (	) experiment. (a)
NR-I, (b) NR-II, (c) HDR.
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equilibrium and instantaneous responses of NR
and HDR under compression. Finally, the pa-
rameters determined in Section 4 were used in the
rate-dependent constitutive model to verify the
adequacy of the proposed parameter identification
scheme.

5.1. Conventional hyperelastic relations and com-
parative performances

Among W functions based on the statistical
molecular theory, Arruda and Boyce (1993) func-
tion is the most successful one. The strain energy
function is expressed in terms of I1 and needs only
two parameters, namely l and km

W ðI1Þ ¼ l
1

2
ðI1

(
� 3Þ þ 1

20k2m
ðI21 � 9Þ

þ 11

1050k4m
ðI1 � 27Þ3 þ � � �

)
: ð16Þ

Among the strain-invariant based models, a
polynomial form of energy density relation pro-
posed by Rivlin (1948) is the first and the com-
monest one. Eq. (17) depicts the general
polynomial form with Cij as material parameter

W ðI1; I2Þ ¼
X1
i;j

CijðI1 � 3ÞðI2 � 3Þ: ð17Þ

The most commonly referred Mooney–Rivlin
function (Mooney, 1940; Rivlin, 1948) is derived
as the first order polynomial expansion of Eq. (17)

W ðI1; I2Þ ¼ C10ðI1 � 3Þ þ C01ðI2 � 3Þ: ð18Þ
However, the large strain-hardening feature of
rubbers cannot be modeled with this expression
and prompted other contemporary researchers to
include different forms of I2. In this course, after
following the proposal of Rivlin and Saunders
(1951), Hart-Smith and Crisp (1967) proposed a
modified form of expression with C1;C2, and C3 as
material parameters:

W ðI1; I2Þ ¼ C1

Z
expfC3ðI1 � 3Þ2gdI1

þ C2 ln
I2
3

� �
: ð19Þ

Subsequently, Alexander (1968) improved the
Hart-Smith function and included a more com-
plicated form of expression of I2 with C1;C2, and
C3 as material parameters

W ðI1; I2Þ ¼ C1

Z
expfC3ðI1 � 3Þ2gdI1

þ C2 ln
ðI2 � 3Þ þ c

c

� �
þ C3ðI2 � 3Þ: ð20Þ

In this course, Tschoegl (1972) suggested to take
some higher order terms of original Rivlin ex-
pression (Eq. (17)) for further correction of
Mooney–Rivlin function. Yeoh (1990) adopted
this idea and finally came out with a cubic function
of I1

W ðI1Þ ¼ C10ðI1 � 3Þ þ C20ðI1 � 3Þ2

þ C30ðI1 � 3Þ3; ð21Þ

where C10; C20; and C30 are material parameters.
Apart from all these approaches, Yamashita

and Kawabata (1992) considered strip-biaxial and
bi-axial test results and proposed another repre-
sentation of W with C5; C2; C3; and N as material
parameters

W ðI1; I2Þ ¼ C5ðI1 � 3Þ þ C2ðI2 � 3Þ

þ C3
N þ 1 ðI1 � 3Þ

N : ð22Þ

The performance of the proposed W relation in
comparison with the conventional hyperelastic
models in representing equilibrium and instanta-
neous responses is presented in Figs. 15 and 16,
respectively. All material parameters in hyper-
elastic models are determined from experimental
data with a least-squares method. In this figure,
Error (%) in stress is defined by

%Error ¼ rExpt � rPredicted
rExpt

 100; ð23Þ

where the Cauchy stresses obtained from experi-
ments and theoretical prediction are expressed by
rExpt and rPrediction, respectively. The comparison
clearly indicates the inadequacy of the conven-
tional models in representing the stress–stretch
response at low stretch level (up to 0.85) and dis-
plays the improvement achievable with the pro-
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posed model. The improvement is more remark-
able in the instantaneous response representation
where the high initial stiffness feature is the most
prominent. However, above 0.80 stretch levels, all
the models show good performance. In general,
the model performed better in NR than HDR.

5.2. Numerical simulation of monotonic compres-
sion tests

The elastic and viscous parameters determined
in Section 4 were used in the constitutive model
presented in Section 3 to simulate the monotonic
compression test at different stretch rates. Figs.
17–19 show the simulation results in comparison
with experimental data for NR-I, NR-II, and
HDR specimens, where a good conformity can be

observed in all the cases. The capability of the
model in simulating the high initial stiffness feature
at different stretch rates is well portrayed in Figs.
17 and 19. In contrast, the performance of the
model in predicting the response of NR-II con-
taining no initial stiffness feature is also noticeable
in Fig. 18. Furthermore, the model also was found
to show its capability in reproducing the interme-
diate large compression and large strain-hardening
feature of all the specimens at slower and faster
stretch rates. The yielding of such ability is due to
the inclusion of the newly proposed hyperelastic
relation in the finite deformation rate-dependent
model and the adequacy of the proposed param-
eter identification procedure.
However, in all the specimens, the simulation

result at 0.001/s stretch rate is slightly poorer than

Fig. 15. Comparative performance of the proposed and the conventional hyperelasticity models in representing equilibrium response

of: (a) NR-I, (b) NR-II, (c) HDR under compression. MR: Mooney–Rivlin model, Yeoh: Yeoh model, AB: Arruda–Boyce model, HS–

A: Hart-Smith–Alexander model, YK: Yamashita–Kawabata model, proposed: proposed model.
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those of other faster stretch rate cases (Figs. 17–
19). This tendency might be related to the limita-
tion of present viscosity modeling, where only one

linear viscosity parameter is employed to model
the rate-dependent behavior. From the compari-
son of relaxation curves shown in Fig. 14, the test

Fig. 16. Comparative performance of the proposed and the conventional hyperelasticity models in representing instantaneous re-

sponse of: (a) NR-I, (b) NR-II, (c) HDR under compression. MR: Mooney–Rivlin model, Yeoh: Yeoh model, AB: Arruda–Boyce

model, HS-A: Hart-Smith–Alexander model, YK: Yamashita–Kawabata model, proposed: proposed model.

Fig. 17. Numerical simulation of monotonic compression test at different stretch rates for NR-I: ð–Þ Numerical simulation, (	) ex-
periment. (a) 0.001, (b) 0.47 s�1 stretch rates.
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results for NR-I and HDR exhibit relatively fast
rate of stress relaxation within the first 2 sec. fol-
lowed by slow relaxation rate. This suggests non-
linear dependence of the viscosity parameter or
necessity of employing more than one linear vis-
cosity parameters in the overstress branch of the

viscoelastic model. Furthermore, in the present
study, the viscosity parameter for the model was
determined based on the first 10–15 s. of the re-
laxation test history. In contrast to this, the du-
ration of a monotonic compression test at a slow
stretch rate up to 0.5 stretch level can last even for

Fig. 18. Numerical simulation of monotonic compression test at different stretch rates for NR-II: ð–Þ numerical simulation, (	) ex-
periment. (a) 0.001, (b) 0.65 s�1 stretch rates.

Fig. 19. Numerical simulation of monotonic compression test at different stretch rates for HDR: ð–Þ numerical simulation, (	) ex-
periment. (a) 0.001, (b) 0.073, (c) 0.47, (d) 0.88 s�1 stretch rates.
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500 s. This duration lies much beyond the range of
considered length of relaxation test history.

6. Conclusion and further remarks

1. The equilibrium response of rubbers can be ap-
proximated from a multi-step relaxation test.
Conducting a series of constant-rate monotonic
compression tests at different stretch rates can
approximate the approach of instantaneous
state.

2. The proposed hyperelastic model can ade-
quately represent the equilibrium and instanta-
neous states. When the elastic parameters of
the material are known, the viscosity parameter
can be estimated by comparing the simple relax-
ation test data with numerical results obtained
from the finite deformation viscoelastic model.

3. A comparative performance evaluation has il-
lustrated the better performance of the pro-
posed hyperelastic model than the
conventional ones in predicting the high initial
stiffness present in the response of NR and
HDR under compression.

4. The comparison of numerical results with those
of monotonic compression test results for differ-
ent stretch rate cases indicates the adequacy of
the proposed model and parameter identifica-
tion procedure. However, the present work
has suggested for considering nonlinear depen-
dence of viscosity in NR and HDR to improve
the prediction capability. It is the present inter-
est of the authors to address this aspect.

Acknowledgements

The authors are indeed grateful to Professor H.
Horii, Department of Civil Engineering, Univer-
sity of Tokyo, Japan, for his valuable comments
and suggestions and particularly for extending the
experimental facilities of his laboratory to carry
out the mechanical tests of the investigation. The
authors gratefully acknowledge the kind coopera-
tion extended by the Yokohama Rubber Co. by
providing test specimens. The authors also sin-
cerely recall the funding provided by the Japanese

Ministry of Education, Science, Sports and Cul-
ture as Grant-in-Aid for Scientific Research (C)
(No. 12650457) to carry out this research.

References

Aklonis, J.J., Macnight, W.J., Shen, M., 1972. Introduction to

Polymer Viscoelasticity. John Wiley & Sons, Canada.

Alexander, H., 1968. A constitutive relation for rubber-like

materials. Int.J. Eng. Sci. 6, 549–563.

Arruda, E.M., Boyce, M.C., 1993. A three-dimensional con-

stitutive model for the large stretch behavior of rubber

elastic materials. J. Mech. Phys. Solids 41 (2), 389–412.

Bergstrom, J.S., Boyce, M.C., 1998. Constitutive modeling of

the large strain time-dependent behavior of elastomers. J.

Mech. Phys. Solids 46 (5), 931–954.

Bonet, J., Wood, R.D., 1997. Nonlinear Continuum Mechanics

for Finite Element Analysis. Cambridge University Press,

Cambridge.

Bueche, F., 1961. Mullins effect and rubber-filler interaction. J.

Appl. Polym. Sci. 5 (15), 271–281.

Castellani, A., Kajon, G., Panjeri, P., Pezzoli, P., 1998.

Elastomeric materials used for vibration isolation of

railaway lines. J. Eng. Mech. 124, 614–621.

Charlton, D.J., Yang, J., Teh, K.K., 1993. A review of

methods to characterize rubber elastic behavior for use

in finite element analysis. Rubber Chem. Technol. 67,

481–503.

Dorfmann, A., Burtscher, S.L., 2000. Aspects of cavitation

damage in seismic bearings. J. Struct. Eng., ASCE 126, 573–

579.

Gent, A.N., 1962. Relaxation processes in vulcanized rubber. I.

relation among stress relaxation, creep, recovery, and

hysteresis. J. Appl. Polym. Sci. 6 (22), 433–441.

Hart-Smith, L.J., 1966. Elasticity parameters for finite defor-

mations of rubber-like materials. Z. Angew. Math. Phys. 17,

608–626.

Hart-Smith, L.J., Crisp, J.D.C., 1967. Large elastic defor-

mations of thin rubber membranes. Int. J. Engrg. Sci. 5,

1–24.

Hernandez Jr., J.Y., 1998. Modeling of highly-deformable

polymeric damping materials for use in seismic protective

devices. Master of Science Thesis, Department of Civil and

Environmental Engineering, Saitama University, Japan.

Huber, N., Tsakmakis, C., 2000. Finite deformation viscoelas-

ticity laws. Mech. Mater. 32, 1–18.

Kawabata, S., Kawai, H., 1977. Strain energy density functions

of rubber vulcanizates from biaxial extension. Adv. Polym.

Sci. 24, 90–124.

Kawabata, S., Matsuda, M., Tei, K., Kawai, H., 1981.

Experimental survey of the strain energy density function

of isoprene rubber vulcanizate. Macromolecules 14, 154–

162.

Kelly, J.M., 1997. Earthquake Resistant Design with Rubber.

Springer-Verlag, London.

94 A.F.M.S. Amin et al. / Mechanics of Materials 34 (2002) 75–95



Lambert-Diani, J., Rey, C., 1999. New phenomenological

behavior laws for rubbers and thermo plastic elastomers.

Eur. J. Mech./Solids 18, 1027–1043.

Le Tallac, P., Rahier, C., Kaiss, A., 1993. Three dimensional

incompressible viscoelasticity in large strain formulation

and numerical approximation. Comput. Meth. Appl. Mech.

Engrg. 109, 233–258.

Lion, A., 1996. A constitutive model for carbon black filled

rubber: experimental investigations and mathematical rep-

resentation. Continuum Mech. Thermodyn. 8, 153–169.

Lion, A., 1997. A physically based method to represent the

thermo-mechanical behavior of elastomers. Acta Mech. 123,

1–25.

Lubliner, J., 1985. A model for rubber viscoelasticity. Mech.

Res. Comm. 12, 93–99.

Miehe, C., Keck, J., 2000. Superimposed finite elastic-visco-

elastic-plastoelastic stress response with damage in filled

rubbery polymers. Experiments, modeling and algorithmic

implementation. J. Mech. Phys. Solids 48, 323–365.

Mooney, M., 1940. A theory of large elastic deformation. J.

Appl. Phys. 11, 582–592.

Mullins, L., 1969. Softening of rubber by deformations. Rubber

Chem. Technol. 42, 339–362.

Ogden, R.W., 1984. Non-linear Elastic Deformations. Ellis

Horwood Ltd., Chichester.

Peeters, F.J.H., Kussner, M., 1999. Material law selection in the

finite element simulation of rubber-like materials and its

practical application in the industrial design process. In:

Dorfmann, A., Muhr, A. (Eds.), Constitutive Models for

Rubber. A.A. Balkema, Rotterdam, pp. 29–36.

Peng, T.J., Landel, R.F., 1972. J. Appl. Phys. 43, 3064.

Reese, S., Govindjee, S., 1998. A theory of finite viscoelasticity

and numerical aspects. Int. J. Solids Structures 35, 3455–

3482.

Rivlin, R.S., Saunders, D.W., 1951. Large elastic deformations

of isotropic materials VII. Experiments on the deformation

of rubber. Phil. Trans. Roy. Soc. 243, 251–288.

Rivlin, R.S., 1948. Philos. Trans. R. Soc. London A 241,

379.

Roeder, C.W., Stanton, J.F., 1983. Elastomeric bearings: state-

of-the-art. J. Struct. Eng., ASCE 109 (12), 2853–2871.

Truesdell, C., Noll, W., 1992. The Non-linear Field Theories of

Mechanics, second ed. Springer-Verlag, Berlin.

Tschoegl, N.W., 1972. Constitutive equations for elastomers.

Rubber Chem. Technol. 45, 60–70.

Ward, I.M., 1985. Mechanical Properties of Solid Polymers.

John Wiley & Sons, New York.

Yamashita, Y., Kawabata, S., 1992. Approximated form of the

strain energy density function of carbon-black filled rubbers

for industrial applications. J. Soc. Rubber Ind. (Jpn) 65 (9),

517–528 (in Japanese).

Yeoh, O.H., 1990. Characterization of elastic properties of

carbon-black filled rubber vulcanizates. Rubber Chem.

Technol. 63, 792–805.

A.F.M.S. Amin et al. / Mechanics of Materials 34 (2002) 75–95 95


