Hyperelasticity Model for Finite Element Analysis of Natural
and High Damping Rubbers in Compression and Shear
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Abstract: Rate-independent monotonic behavior of filled natural rubber and high damping rubber is investigated in compression and
shear regimes. Monotonic responses obtained from tests conducted in both regimes demonstrate the prominent existence of the Fletcher—
Gent effect, indicated by high stiffness at low strain levels. An improved hyperelasticity model for compression and shear regimes is
proposed to represent the rate-independent instantaneous and equilibrium responses including the Fletcher—Gent effect. A parameter
identification scheme involving simultaneous minimization of least-square residuals of uniaxial compression and simple shear data is
delineated. The difficulties of identifying a unique set of hyperelasticity parameters that hold for both compression and shear deformation
modes are thus overcome. The proposed hyperelasticity model has been implemented in a general purpose finite element program. Finite
element simulations of experiments have shown the adequacy of the proposed hyperelasticity model, estimated parameters, and employed
numerical procedures. Finally, numerical experiments were conducted to further explore the potential of the proposed model, and
estimated parameters in analyzing rubber layers of a base isolation bearing subjected either to compression or to a combination of

compression and shear.
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Introduction

Filled natural rubber (NR) is one of the most impressive materials
for engineering applications. During the vulcanization process,
some particles such as carbon black are added as fillers to im-
prove certain properties of rubber for specific applications. Rub-
ber is widely used in tires, bridge bearings, seals, shock absorbing
bushings, tunnel linings, wind shoes, etc. (Treloar 1975; Roeder
and Stanton 1983; Ward 1985; Mullins 1987; Castellani et al.
1998). Most of these applications utilize the high deformability
and large compressive strength features of rubbers. Recent use
of high damping rubber (HDR) in base isolation devices for
earthquake resistant structures has added a new dimension to the
application of rubbers (Fujita et al. 1990; Carr et al. 1996; Mori
et al. 1996; Kelly 1997). Rubber bearings for base isolation de-
vices are usually made with alternating thin horizontal layers of
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rubbers bonded to steel plates. In the concept of base isolation,
the steel plates provide large stiffness under vertical load, while
the rubber layers provide low horizontal stiffness, when the
structure is subjected to lateral loads (e.g., earthquake, wind, etc.).
The devices are usually subjected either to compression or to a
combination of compression and shear.

To analyze rubber bearings, different analytical methods (Lim
and Herrmann 1987; Herrmann et al. 1988a,b, 1989; Hwang and
Ku 1997; Kelly 1997) that view rubber bearings as an equivalent
homogeneous orthotropic continuum are available. Recently,
Chang (2002) proposed another formulation: an analytic stiffness
matrix to model laminated rubber bearings. These methods, how-
ever, cannot discretely model the behaviors of the rubber and
steel, and therefore have substantial limitations in predicting local
stress and strain conditions within the rubber layers. Furthermore,
in practical applications, bearings are often made with tapered
cross sections (AASHTO 1992; Ramberger 2002) so as to accom-
modate inclined girders on the top of a horizontal abutment. In
other cases, V-shaped steel plates are used (European Commis-
sion 1999) instead of horizontal ones. However, no analytical
method is hitherto available to analyze bearings having these vari-
ous configurations. In this situation, to analyze rubber bearings
by resolving the stress fields in rubber layers, at present two paths
can be followed: physical testing of the prototypes or numerical
analysis on computers using a finite element (FE) technique.
While both methods have their own difficulties, from a design and
performance evaluation point of view, numerical analysis is more
suitable and versatile. Nevertheless, the core of a reliable FE
analysis of rubber bearings at the outset relies on a constitutive
model that provides adequate representation of the material be-
havior (Nicholson et al. 1998) both in compression and shear
deformations. These constitutive models are described following
large deformation theories that take geometric and material non-



linearities into account. Moreover, constitutive parameters for
such models must have the capability to depict the material re-
sponses in these two deformation modes.

The monotonic behavior of rubbers is dominated by a nonlin-
ear rate-dependent elastic response (Aklonis et al. 1972). Under
cyclic loading however, rubbers display other inelastic effects,
e.g., hysteresis (Gent 1962a,b), Mullins’ softening effect (Mullins
1969), and residual strain (Bueche 1960). All these effects are
more prominent in HDR. Hence, to model and analyze NR and
HDR using a FE procedure, the general constitutive model should
be capable of representing these effects. Yet, rubbers are usually
modeled using hyperelasticity models (Charlton et al. 1994;
Nicholson et al. 1998) to determine the stress distribution under
monotonic loading. Such models are expressed in terms of a
strain energy density function, W. In the derivation of the func-
tions, deformation is assumed to completely recover to the initial
state. Besides, W is assumed to depend only on the final state of
strain and be independent of the loading history. Such a model
essentially represents a rate-independent response and works as a
major component for a more general model representing other
inelastic effects as well (Bonet and Wood 1997). Therefore, as an
elementary step, this current work considers modeling the rate-
independent monotonic behavior under compression and shear
through a hyperelasticity model, and its implementation in a FE
code.

In this context, earlier work by Jankovich et al. (1981), Hig-
gblad and Sundberg (1983), Mattheck and Erb (1991), and Peng
and Chang (1997) in developing FE procedures for analyzing NR
parts under tension is noted. Ali and Abdel-Ghaffar (1995) also
presented a FE procedure for analyzing the rubber layers of a NR
bearing under axial compression. Results from the FE analysis of
NR bearings under axial compression, and comparison with ana-
lytic solutions, were also reported by Imbimbo and Luca (1998).
There, the analytical solution was conformed to FE results for
bearings with thinner rubber layers. For bearings with thicker
layers of rubber, however, poor agreement was noted, indicating
the significance in constitutive modeling. In a contemporary work
(Hamez et al. 1998), stress states in a rubber bearing subjected to
compression and shear were investigated theoretically using some
assumed values of constitutive parameters. In this numerical work
the authors tried different hyperelasticity models as described in
different literature. Yet, there are limitations in the present state-
of-the-art in providing an adequate hyperelasticity model and
valid model parameters that can be utilized for analyzing NR and
HDR subjected to compression and shear. Thus, scientific interest
in these published works using the FE approach is restricted only
to the theoretical stress analysis of rubber layers rather than pro-
viding the tools for a practical challenge that a designer may
encounter in analyzing a NR or HDR bearing. This current work
aims to resolve this issue from a realistic viewpoint, and to de-
velop a general procedure for practical application.

Present State-of-the-Art

Rubbers fall into the class of highly deformable solids exhibiting
large deformation under a comparatively small load. When a solid
body is subjected to a large deformation, the relationship of po-
sitions in deformed and undeformed configurations is described
by a deformation gradient tensor F
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where A\, \,, and N;=stretches in the three principal directions;
and A=1+dL/L, with L being the undeformed length. N;,N,,N3,
and n;,n,,n;=material vector triads and spatial vector triads, re-
spectively. The left Cauchy Green deformation tensor, B, de-
scribes the strain, while the Cauchy stress tensor, T, describes the
stress
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where [, I, and I;=strain invariants. The hydrostatic pressure
p is constitutively indeterminate, and hence it is obtained from the
underlying equilibrium and boundary conditions of the particular
problem. Based on the isotropic assumption, the strain energy
density function W is expressed as a function of the strain invari-
ants (Rivlin 1948a,b):

W=W(I,,1,,15) (5)

Since rubbers are considered to fall in the class of incompressible
materials exhibiting very small volumetric deformation compared
to the distortional deformation, the value of /5 is usually assumed
to be unity. Thus, in a strain-invariant based incompressible hy-
perelasticity model, the description of W as a function of /, and I,
forms the basis of the approach. Alternatively, on the basis of the
Valanis and Landel hypothesis (Valanis and Landel 1967), W can
also be expressed directly as a function of the three principal
stretches, namely, A\, \,, and \3. A rigorous mathematical inter-
pretation is available (Treloar 1975) to show that both approaches
are equivalent.

Due to strong dependence of the stress response on the state of
strain, experiments are required to identify an adequate form of
W. Ideally, such a function should have the capability to predict
responses for all possible deformation modes. Among the strain-
invariant-based models, the Mooney—Rivlin model (Mooney
1940; Rivlin 1948a,b) is the oldest one. Yet, simpler forms of the
Mooney—Rivlin model had limitations in representing the harden-
ing feature that exists at large strain levels. Tschoegl (1972) in-
vestigated the use of different higher order terms of the Mooney—
Rivlin relation for better reproduction. Subsequently, other
versions of hyperelasticity models appeared (Hart-Smith 1966;
Alexander 1968; Yamashita and Kawabata 1992; Arruda and
Boyce 1993) that better represented the hardening feature at large
strains. Yeoh (1990) noted the limitations of Mooney—Rivlin in
representing simple shear deformation. A cubic function for the
strain energy density that is applicable for both tension and simple
shear regimes was also proposed. Recently, Yoshida et al.
(2004a,b) used the Yamashita—Kawabata model to represent the
elastic behavior of NR and HDR in an elastoplastic model that

JOURNAL OF ENGINEERING MECHANICS © ASCE / JANUARY 2006 / 55



reproduces the large strain cyclic responses in uniaxial tension
and simple shear regimes. In addition to the strain-invariant-based
models, principal stretch-based models (Ogden 1972; Peng and
Landel 1972) were also found to adequately predict the large
strain uniaxial tension responses.

Most of the published work is aimed at predicting NR re-
sponses in a large tension regime. Until recently only a few of
these reported the behavior of NR in compression and shear re-
gimes, whereas no thorough work has been undertaken on the
behavior of HDR. Furthermore, while all the attention was being
paid to representing large strain monotonic responses of rubbers
through different hyperelasticity models, there have been reports
of difficulties with these models in representing the responses at
small strain levels (Yeoh 1990, 1993, 1997) distinguished by high
stiffness (modulus). This feature has been referred to recently as
the Fletcher—Gent effect (Ahmadi et al. 2003) after the work of
Fletcher and Gent (1953) who first discussed the role of fillers on
the appearance of the phenomena in filled NR under simple shear.
The phenomenon was also observed by Payne and Whittaker
(1971) on NR and more recently by Dorfmann and Burtscher
(2000) on HDR in different deformation modes, including com-
pression and simple shear. The practical necessity of modeling the
Fletcher—Gent effect is quite obvious (Davis et al. 1994), when
we consider that base isolation bearings are subjected to low am-
plitude movement due to service traffic loads, as an example
(Chen and Ahmadi 1992). Recently, Amin et al. (2002) revisited
the Fletcher—Gent effect while studying the monotonic behavior
of NR and HDR in compression. There, the feature was found to
have direct dependence on the applied strain rate. Due to the
presence of a higher proportion (31%) of filler (Kelly 1997), HDR
exhibits the effect much more prominently than NR. Yet, the clear
limitations of the conventional hyperelasticity models in repre-
senting the phenomenon in small compression strains for both NR
and HDR is revealed from the investigation (Amin et al. 2002).
To this end, an improved hyperelasticity model was proposed for
the compression regime and the enhanced capability achievable
with the new model was verified. However, any model that can
represent both compression and shear responses of NR and HDR
is yet to appear. This suggests the need for further study of the
behavior of NR and HDR under compression as well as shear
with a view to developing an adequate hyperelasticity model ap-
plicable to these two deformation modes.

In modeling the behavior of rubbers subjected to several de-
formation modes, a certain amount of ambiguity arises in identi-
fying the parameters of a hyperelasticity model. The parameters
are generally estimated by using a curve-fitting technique. Hence,
they are solely based on their fit to experimental data (James et al.
1975a,b; Treloar 1975; Quigley et al. 1995). Over the years,
different researchers have noted that the constitutive parameters
of a hyperelasticity model determined from tests at a particular
deformation mode are not valid for other modes. To solve this
problem, earlier work examined the parameters identified from
uniaxial tension, planar tension (pure shear), and biaxial tension
deformations. These deformations are solely involved in the di-
agonal elements (F;, F,, and F53) of the deformation gradient
tensor [F, Eq. (1)]. Charlton et al. (1994) mention that the param-
eters determined from uniaxial test data fail in predicting biaxial
or planar tension (pure shear) responses. Similar notions are also
well documented in other published works (Quigley et al. 1995;
Anand 1996; Boyce and Arruda 2000; Seibert and Schoche 2000).
To resolve the problem, Gendy and Saleeb (2000) proposed a
nonlinear material parameter estimation scheme. The scheme
used a differential form of the Ogden hyperelasticity model along
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with a sensitivity analysis and an optimization procedure to obtain
the parameters. The set of parameters determined with this ap-
proach by using uniaxial tension, biaxial tension, and planar
tension (pure shear) data from Treloar (1944) were found to per-
form well in these deformation modes.

Yet, the problems associated with identifying parameters for
unaxial compression—tension and simple shear deformation in-
volving diagonal and nondiagonal elements of the F tensor re-
mained unsolved. In contrast to the uniaxial, biaxial and planar
tension (pure shear) deformations that are related to the diagonal
elements (F,;, F,,, and F33) of F tensor, a nondiagonal element
(F},) is relevant to simple shear deformation. Yeoh (1993) made
an early report of work on this problem, when the hyperelasticity
parameters of his model determined from simple shear experi-
ments were found to be inadequate for uniaxial tension—
compression responses on the same material. Later, Yeoh (1997)
examined the Ogden model (1972) and the available curve-fitting
algorithms of different commercially available FE software
(ABAQUS 1996 and MARC 1996) in predicting simple shear re-
sponse. In these programs, uniaxial test data were used to fit the
Ogden model and estimate the parameters. Yeoh observed gross
overestimation in the prediction of simple shear response using
these parameters. In this same context, Gendy and Saleeb (2000)
performed a verification trial for estimating parameters from com-
pression and simple shear data using the nonlinear parameter es-
timation scheme proposed in their paper. The performance of their
approach was compared with another one available in commer-
cially available FE software (ABAQUS 1996). However, in both
cases, the evaluations of the performance were found not to give
enough confidence for large strain simple shear response. Further-
more, van den Bogert and de Borst (1994) explicitly showed the
limitations of the hyperelasticity parameters determined from a
uniaxial tension experiment in predicting the responses of rubber
subjected simultaneously to compression and shear. At this time
there is no method that can identify a unique set of hyperelasticity
parameters for compression and simple shear deformation. This
limits wide application of the available general-purpose FE codes
for analyzing rubbers that are subjected to compression and shear.

Objectives and Methodology

Our work was aimed first at developing an improved hyperelas-
ticity model that can reproduce the rate-independent monotonic
response of NR and HDR under compression and shear. Devel-
opment of a method to identify a unique set of constitutive
parameters from experimental observations carried out in these
regimes was addressed next. To make the model applicable for
practical application, our work was then directed to implemen-
tation of the proposed hyperelasticity model in a general purpose
FE code and its verification. The final objective of the work was
to explore the potential of the developed FE procedure in analyz-
ing the full-scale laminated NR and HDR bearings that are sub-
jected either to compression or to combinations of compression
and shear.

To meet the objectives mentioned above, experiments were
carried out on NR and HDR specimens in compression and shear
regimes to identify the rate-independent monotonic responses. To
this end, the experimental scheme proposed by Amin et al. (2002)
was followed to observe the fundamental rate-independent instan-
taneous and equilibrium responses in the specimens. With a view
to working out the generic structure of the hyperelasticity model,
the experimental data were considered in detail in regard to the



observed nonlinearities of the stress—strain responses of NR and
HDR at different strain levels. A minimization scheme was
proposed to estimate unique sets of hyperelasticity parameters
for rate-independent monotonic responses of NR and HDR in
compression and shear. The proposed hyperelasticity model was
incorporated in a general purpose FE code. Three-dimensional
(3D) FE simulations of the experiments were performed to verify
the adequacy of the proposed hyperelasticity model and param-
eter identification scheme. Finally, numerical experiments were
carried out on rubber blocks having fixed boundary edges and
subjected to compression and combinations of compression and
shear.

Experiments in Uniaxial Compression and Simple
Shear

Specimens of NR and HDR having shear moduli (JIS K 6301) of
0.98 and 0.78 MPa, respectively, were tested under homogeneous
compression and simple shear deformations. These rubbers were
manufactured at Yokohama Rubber Company, Japan and have
application to base isolation bearings. Tests were carried out in a
computer-controlled servohydraulic testing machine (Shimadzu
Servo Pulser 4800) with a 200 kN load cell. The maximum stroke
rate of the load cell crosshead was 50 mm/s. Displacement was
applied in the vertical direction on the specimen and the corre-
sponding reaction was obtained from the load cell. Compression
specimens were cylindrical in shape measuring 41 mm in height
and 49 mm in diameter. A lubricant was used to reduce platen-
specimen friction. Thus, it was possible to obtain a homogeneous
uniaxial compression deformation. The simple shear specimens
(25X25%5 mm) had a net shear area of 25X 25 mm. Dual lap
shear specimens (Charlton et al. 1994) were used. Further details
of the test setups and procedures are available in Amin (2001),
Amin et al. (2002, 2003), and Wiraguna (2003).

Prior to an actual test, each virgin specimen was subjected to a
five-cycle preloading at a 0.5/s strain rate to remove the Mullins’
softening effect (Mullins 1969). All tests were conducted 20 min
after completing the preloading test. Preloaded specimens were
tested in compression and shear to identify the fundamental rate-
independent responses. By definition, rate-independent equilib-
rium response is obtained when a rate-dependent material is
loaded at an infinitely slow rate, whereas rate-independent instan-
taneous response is obtained when the material is loaded at an
infinitely fast rate. The experimental scheme as proposed by
Amin et al. (2002) involving multistep relaxation tests and mono-
tonic tests at different strain rates was followed to identify the
responses in compression and simple shear regimes.

Figs. 1 and 2 present these boundary state responses as ob-
served in NR and HDR. Due to the viscosity induced strain-rate
effect, the response at the equilibrium state differs significantly
from that at the instantaneous state. The effect is visible both in
compression and shear deformation modes. The HDR shows the
effect more prominently than NR. The stress—strain responses in
both states are markedly nonlinear at low, moderate, and large
strain levels. The presence of high stiffness at low strain levels,
referred to as the Fletcher—Gent effect, is clearly observed in
all the stress—strain responses. This feature appeared to be the
most prominent in the HDR at its instantaneous state and the
weakest in NR at the equilibrium state. In addition, the large
deformability at moderate strain levels and a strain-hardening
feature at large strain levels were observed. In order to examine
the compressibility feature of NR and HDR, volumetric deforma-
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Fig. 1. Monotonic responses obtained from high damping rubber at
equilibrium state and instantaneous state: (a) compression and (b)
simple shear

tion of specimens under uniaxial compression as measured by
Amin et al. (2003) were observed. At a stretch of 0.5, NR and
HDR were measured as compressed by 2.9 and 1.1% of their
respective initial volumes. This indicates the adequacy of assum-
ing the materials to be incompressible. All these observations will
be addressed in the next section to introduce a hyperelasticity
model to represent the responses.

Hyperelasticity Model and Parameter Identification

The elementary basis for describing stress—strain response using
a hyperelasticity relation has been presented in “Present State-of-
the-Art”. Further discussion in this section on determining an
adequate form of the hyperelasticity relation has clarified the ne-
cessity of conducting experiments at relevant deformation modes
to consider the strong dependence of stress response on the strain
state. In this context, test results are presented in “Experiments
in Uniaxial Compression and Simple Shear” to identify the
fundamental rate-independent equilibrium and instantaneous
responses of NR and HDR obtained in compression and shear
regimes. All these will be utilized in this section to propose a
hyperelasticity model and a parameter identification scheme. To
this end, based on the finite strain theory, the basic descriptions
of deformation in these two regimes (Fig. 3) and the associated
domains of strain invariants will be considered first.
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Fig. 2. Monotonic responses obtained from natural rubber at
equilibrium state and instantaneous state: (a) compression; and (b)
simple shear

Uniaxial Compression

When a body is subjected to large homogeneous uniaxial com-
pression, the principal stretch (\;) in the loading direction be-
comes compression [Fig. 3(a)]. Principal stretches in the other
two directions (A, and \;) become tension. Considering isotropy
and incompressibility, we have )\%=)\§=)\Tl. Using Egs. (1) and
(2), the deformation gradient tensor F and left Cauchy—Green
deformation tensor B can be written as

0 L 0 0 i 0
F= \')\1 B= N (6)
1 1
0 0 \/— 0o 0 —
)\] )\l

Using Egs. (4) and (5), the strain invariants for uniaxial compres-
sion are expressed as

I 2 Moo 1 2N, L=1 (7)
= + = + =
1 )\1 1 2 )\% 1 3
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Fig. 3. Fundamental description of deformation: (a) homogeneous
uniaxial compression; and (b) simple shear

Using Eq. (3), the expression for Cauchy stress T, can be
expressed as

, L\[(ow 1w
T11=2 )\1__ + — (8)
AT

Simple Shear

Fig. 3(b) schematically presents the simple shear deformation. In
contrast to uniaxial compression, the direction of applied dis-
placement does not coincide with the directions of principal
stretches; rather it involves a rotation of axes. Due to applied
shear strain (), the deformation gradient tensor F and the left
Cauchy—Green deformation tensor B are described as

1 vy 0 1+ v 0
F=0 1 0| B=| v 10 (9)
001 0 01
Using Egs. (4) and (9), the strain invariants are expressed as

L=L=3+v* L=1 (10)

Then the expression for Cauchy stress 7, becomes
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Using Eq. (2) and taking eigenvalues of the B tensor, the principal



stretches, \; and A\, associated with shear strain «y can be obtained

as
2 2
Y Y
)\:\/1+—+ \/1+— 12
1 5 Y 4 (12)
2 2
Y Y
)\=\/1+—— \/l+— 13
2 ) Y 4 (13)

Eq. (12) represents the principal tension stretch, while Eq. (13)
represents the principal compression stretch.

Hyperelasticity Model

Representation of incompressible hyperelasticity response de-
pends solely on the definition of W(I,,1,). Egs. (5), (7), (8), (10),
and (11) show this fact. Hence, to establish the function W that is
applicable for relevant deformation modes, Kawabata et al. (1977,
1981) studied the dependence of dW/dl, and dW/dl, on I; and I,
using uniaxial and biaxial test data. Their investigation showed
that W/dl, and dW/dl, depend only on I; and I,, respectively.
Based on these findings, W can be split into two individual func-
tions, namely, f(/,) and g(I,)

W(11,12)=ff(11)d11+fg(12)d12 (14)
where
oW ow
fy) = an g(h) = A

This idea was further clarified in the work of Lambert-Diani and
Rey (1999), where a general procedure for identifying the strain
energy density function was proposed. In their work, the effect of
the maximum principal stretch \; on the values of I, and I, in
uniaxial tension, planar tension (pure shear), and equibiaxial ten-
sion modes were considered. Obviously, all these deformation
modes are related to the diagonal components of the F tensor,
where the applied stretching direction coincides with the direc-
tions of principal stretches. Following this approach, Amin et al.
(2002) proposed a hyperelasticity model for NR and HDR in a
uniaxial compression regime. The model was expressed as a func-
tion of /; only. Now, in order to include the simple shear response
we have revisited the approach of Lambert-Diani and Rey (1999)
and compared the effect of maximum principal stretch A; on the
values of /; and I, in uniaxial compression—tension and simple
shear modes. To do this, Egs. (7) and (12) have been used, in
Fig. 4, to present the relations between the first and the second
strain invariants (/; and I,) with principal stretch \; for uniaxial
compression and simple shear deformation. The comparative
curves clearly illustrate the effect of I, on principal tension
stretches (A, >1) arising out of simple shear. The necessity to
consider the inclusion of g(/,) in the W function becomes obvi-
ous. Following this observation, the original W function as pro-
posed by Amin et al. (2002) is further improved here

Cs
w(l,,I,) = Cs(I, -3 I, —3)M!
(1,,1,) 5(1 )+N+l(l )
LG (I, = 3" 4 Cy(1, - 3) (15)
M+1

where Cs, C3, C4, C,, M, and N=material parameters. Here it
should be noted that the explicit form of the newly introduced
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Fig. 4. Domains of first and second strain invariants in uniaxial
compression—tension and simple shear deformations

g(I,) function related to the C, parameter is the simplest possible
form that exists in the original Mooney—Rivlin model (Mooney
1940; Rivlin 1948a,b). Using Egs. (8), (11), and (15), the expres-
sions for Cauchy stress in compression and simple shear for the
proposed hyperelasticity model can be obtained as

1 c
Ty = 2(7\% - )\—) [cs + G5 =3V + Cy(1, = 3)M + )\—2
1 1

(16)

T,=2y[Cs+ Cy + CﬂZM + C3’YZN] (17)

Here, one can note the case of undeformed state, where A;=1,
v=0, and I,=1,=3. Once these values are put in Egs. (15)—(17),
W, T,,, and T}, become zero. This result agrees with the initial
boundary condition that exists in the stress free undeformed
state.

Parameter Identification

In order to identify the parameters of the proposed hyperelasticity
model, the experimental data obtained in compression and shear
regime were used along with a scheme involving the least-square
method to minimize the residuals. Fig. 5 presents a schematic
of the proposed procedure. To identify parameters for either
equilibrium or instantaneous state, initial values of the parameters
were assumed to calculate, & for each compression data point
by taking the square of the difference between T, values ob-
tained from experiment and the hyperelasticity relation [Eq. (16)].
Thus, the square of the residuals for each data point was ob-
tained. In a similar fashion, simple shear data was used to
calculate ) for each of the shear data points using Eq. (17). In the
following step, summation of the residuals, §; and m; obtained
from compression and shear data was minimized using Math-
ematica (Wolfram 1999). The process is quite simple and straight-
forward. In such a minimization scheme, the number of data
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Table 1 presents four sets of the parameters for NR and HDR %
in the equilibrium state and instantaneous states. Each set of es-
timated parameters is valid for predicting a relevant response both 1 r o B
in compression and shear deformation modes. Figs. 6 and 7 [ a2 ]
present the experimental data points and the stress—strain re- ) {1 ®
sponses predicted by the hyperelasticity model and the estimated o F
sets of parameters in compression and shear regimes. The excel-
0 05 1 15 2 25

lent performance of the proposed hyperelasticity model and the
parameter identification scheme in representing the experimen-
tally observed responses at low, moderate, and large strain levels
is evident.

When the two states are compared, the values (Table 1) of all
multiplicative parameters (Cs,Cs,C,,C,) at equilibrium state are
seen to be consistently smaller than those at instantaneous state
for a particular material. However, for exponent type parameters
(M and N), each of the materials has constant values in both
states. These features help to estimate the parameters for viscosity
induced overstress by directly subtracting the instantaneous state
values of Cs, C3, Cy4, and C, from the equilibrium state values
to fit a Maxwell or Kelvin model (Huber and Tsakmakis 2000;
Amin et al. 2002). Hence, unconstrained fit was first obtained for
the instantaneous state. The multiplicative and exponent type pa-
rameters were thus estimated. Subsequently, the values of M and
N as finally obtained from instantaneous state trials were intro-
duced as constraints to obtain the fit to estimate the multiplicative

Y

Fig. 6. Representation of rate-independent monotonic responses
of high damping rubber using proposed hyperelasticity model and
identified parameters. The result obtained from three-dimensional
finite element simulation is also presented for comparison: (a)
compression and (b) simple shear.

parameters for the equilibrium state. On the other hand, this
approach is not required for the case when one evaluates the
parameters for simulating monotonic compression and simple
shear responses obtained at any other strain rate within the vis-
cosity domain. In such a process, compression and simple shear
tests must be conducted at the same strain rate to eliminate the
rate-dependency effect from the test data and to obtain some rea-
sonable values of parameters. At this stage, however, we noted a
limitation of earlier parameter estimation efforts (Anand 1996;

Table 1. Material Parameters for High Damping Rubber (HDR) and Natural Rubber (NR)

Specimens Responses C, (MPa) C; (MPa) C, (MPa) Cs (MPa) M N

HDR Equilibrium 0.145 1.182 —-5.297 4.262 0.06 0.27
Instantaneous 0.166 2.477 —11.689 9.707

NR Equilibrium 0.095 0.019 -0.515 0.754 0.15 1.29
Instantaneous 0.176 0.043 —0.861 1.056
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Fig. 7. Representation of rate-independent monotonic responses of
natural rubber using proposed hyperelasticity model and identified
parameters. Results obtained from three-dimensional finite element
simulation are also presented for comparison: (a) compression and
(b) simple shear.

Boyce and Arruda 2000; Gendy and Saleeb 2000) for predicting
responses in multiple deformation modes using a hyperelasticity
model. In all these works, no consideration was given either to
using test data for rate-independent responses obtained in the rel-
evant deformation modes or to eliminating the strain-rate effect
from the test data employed. This disagrees with the fundamental
proposition of hyperelasticity theory that merely depicts a rate-
independent response.

Finite Element Implementation and Verification

The proposed hyperelasticity model [Eq. (15)] and the identified
parameters (Table 1) were utilized in this section for analyzing
rubbers with different loading and boundary conditions. The
model was implemented in FEAP, a general purpose FE analy-
sis program (Taylor 2000) developed at the Univ. of Califor-
nia at Berkeley, Berkeley, Calif. and partially documented in

50 mm

Mesh 2

|< 25 mm

(®

Fig. 8. Finite element mesh used for numerical simulation. (a) Mesh
1. Boundary conditions: Node A at bottom surface (2-3 plane) is
restrained in 1, 2, and 3 directions. All other nodes at bottom surface
(2-3 plane) are free in 2 and 3 directions and restrained in 1 direction.
Node B at top edge is restrained in 2 and 3 directions. All other nodes
at top edge are free. Displacement is applied along 1 direction. (b)
Mesh 2. Boundary conditions: All nodes at bottom edge (parallel to
2-3 plane) are restrained and fixed in 1, 2, and 3 directions. All nodes
at top edge (parallel to 2-3 plane) are restrained in 1 and 3 directions.
Displacement is applied along two directions.

Zienkiewicz and Taylor (1996). Eight node 3D solid elements
formulated on the basis of finite deformation theory were used to
model NR and HDR. Figs. 8(a and b) present two different
meshes involving 216 (Mesh 1) and 100 (Mesh 2) 3D elements,
respectively. To overcome the ill-conditioning problem arising
due to incompressible deformation, a penalty function algorithm
(Simo and Taylor 1982) was used.

In order to validate the FE implementation process (Bhuiyan
2004), compression and simple shear experiments (“Experiments
in Uniaxial Compression and Simple Shear”) were simulated
using Meshes 1 and 2, respectively. The boundary conditions for
both of these two meshes were defined in conformity with the
adopted experimental conditions. The instantaneous and equilib-
rium responses for NR and HDR as obtained from FE simulation
are plotted in Figs. 6 and 7. The strong correlation between ex-
periment and simulation for each of the cases over the strain
ranges provides confidence for the adopted numerical procedure
that fully takes the material nonlinearity into account. Fig. 9 pre-
sents the displacement and stress contours for uniaxial compres-
sion of HDR response. The homogeneity of deformation (\;) pat-
tern [Fig. 9(a)] and stress (T,) distribution [Fig. 9(b)] of the
uniaxial compression test can be noted. Fig. 10 presents the stress
(T,,) contour obtained from simple shear simulation of HDR re-
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Fig. 9. Numerical simulation of instantaneous response obtained
from high damping rubber under uniaxial homogeneous compression
experiments using Mesh 1: (a) displacement contours at A\;=0.70 and
(b) stress contours (7;) at A;=0.85

sponse. In contrast to uniaxial homogeneous compression, some
nonuniform distribution of stress is noted here. However, the
variation of stress is close enough to be considered uniform.
Finally, in order to examine the potential of using the de-
veloped procedure in analyzing rubber bearings, results of some
numerical experiments are presented. To do this, the rubbers were
modeled using 3D solid elements (Mesh 1), but having a fixed
boundary at the edges. The boundaries of the adopted FE mesh
thus resemble what exists in a real bearing. The mesh was first
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Fig. 10. Numerical simulation of instantaneous response obtained
from high damping rubber under simple shear using Mesh 2. Shear
stress (Tj,) contours obtained at y=1.00 are shown.
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Fig. 11. Numerical experiments on Mesh 1, but with fixed boundary
edges and subjected to uniaxial compression. Parameters of high
damping rubber at instantaneous state are used with deformed mesh
along with T contour at A\;=0.70.

subjected to uniaxial compression. Fig. 11 presents the deformed
shape of the mesh delineating deformation along with the stress
(Ty,) contours for HDR. In contrast to Fig. 9, the nonhomogeneity
in the distribution of stress arising from the adopted boundary
condition can be noted. The simulated stress distribution indicates
the existence of a very high compressive stress at the middle
of the mesh. Fig. 12 presents the deformed shapes and stress
distributions of the mesh subjected to a combination of compres-
sion and shear. The deformed mesh indicates the geometric non-
linearities taken into account using the finite deformation formu-
lations. Furthermore, the variation of shear stress (7),) in the
block can be noted from the figure. The contours suggest a very
high concentration of shear stress in the diagonal direction. In all
these FE simulations, incompressible deformation was assumed
to simulate responses from small rubber blocks. Yet, in the case of
analyzing large base isolation bearings, a plane strain situation
exists at the bearing center. In such locations, hydrostatic tension
to compression may occur in the bearings resulting in consider-
able volumetric deformation (Hermann et al. 1988a,b, 1989; Dor-
fmann and Burtscher 2000). To address this, the proposed hyper-
elasticity model needed to be modified by incorporating a
dilational term involving I5 [Eq. (5)].
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Time = 9.00E-01

Fig. 12. Numerical experiments on Mesh 1, but with fixed boundary
edges and subjected to uniaxial compression and simple shear in
combination. Parameters of high damping rubber at instantaneous
state are used with deformed mesh along with T}, contour at
\=0.60, y=0.40.
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Conclusions and Further Remarks

1. A typical monotonic response of rubbers is marked by large
deformability up to moderate strain levels followed by a
strain-hardening feature at large strain levels. However, the
responses obtained from NR containing filler and HDR
specimens in compression and shear regimes displayed the
existence of the Fletcher—Gent effect characterized by high
stiffness (modulus) at low strain levels. We took this feature
into account and proposed an improved hyperelasticity
model to represent the rate-independent elastic responses of
NR and HDR in compression and shear.

2. A parameter identification scheme that simultaneously uses
the compression and shear data to minimize the least-square
residuals is proposed. The scheme was successfully used to
identify a single set of parameters applicable for both com-
pression and shear regimes.

3. The proposed hyperelasticity model was implemented in a
general-purpose FE code. Numerical simulations of experi-
ments using the proposed model and estimated parameters
were conducted for verification purposes. Finally, numerical
experiments were carried out on rubber with fixed boundary
edges and subjected to different loading combinations. To
improve the prediction capability, our work suggests incor-
porating a volumetric term in the proposed hyperelasticity
model to account for the volumetric deformation that may
occur in the center locations of a base isolation bearing. The
writers expect to address this aspect of the problem in the
future.

Acknowledgments

The writers are very grateful to Professor H. Horii, Department
of Civil Engineering, University of Tokyo, Japan for his valuable
comments and suggestions and particularly for allowing them to
use the experimental facilities of his laboratory to carry out the
mechanical tests in the investigation. The writers gratefully ac-
knowledge the kind cooperation extended by the Yokohama
Rubber Co. by providing test specimens. The writers also sin-
cerely appreciate the funding provided by the Japanese Ministry
of Education, Science, Sports, and Culture as a Grant-in-Aid
for Scientific Research (C) (Grant No. 12650457) to carry out
this research.

References

ABAQUS (1996). Theory manual, Version 5.6, Hibbitt, Karlsson & So-
rensen, Inc., Providence, R.I.

Ahmadi, H. R., Kingston, J. G. R, Muhr, A. H., Gracia, L. A., and
Goémez, B. (2003). “Interpretation of the high-low-strain modulus of
filled rubbers as an inelastic effect.” Proc., 3rd European Conf. on
Constitutive Models for Rubber, J. Busfield and A. Muhr, eds.,
Balkema, Rotterdam, The Netherlands, 357-364.

Aklonis, J. J., Macnight, W. J., and Shen, M. (1972). Introduction to
polymer viscoelasticity, Wiley, Toronto, Canada.

Alexander, H. (1968). “A constitutive relation for rubber-like materials.”
Int. J. Eng. Sci., 6, 549-563.

Ali, H. M., and Abdel-Ghaffar, A. M. (1995). “Modeling of rubber and
lead passive-control bearings for seismic analysis.” J. Struct. Eng.,
121(7), 1134-1144.

American Association for State Highway and Transportation Officials

(AASHTO). (1992). Standard specifications for highway bridges,
15th Ed., Washington, D.C.

Amin, A. F. M. S. (2001). “Constitutive modeling for strain-rate depen-
dency of natural and high damping rubbers.” PhD thesis, Saitama
Univ., Saitama, Japan.

Amin, A. F. M. S., Alam, M. S., and Okui, Y. (2002). “An improved
hyperelasticity relation in modeling viscoelasticity response of natural
and high damping rubbers in compression: Experiments, parameter
identification, and numerical verification.” Mech. Mater., 34, 75-95.

Amin, A. F. M. S., Alam, M. S., and Okui, Y. (2003). “Measurement of
lateral deformation of natural and high damping rubbers in large de-
formation uniaxial tests.” J. Test. Eval., 31(6), 524-532.

Anand, L. (1996). “A constitutive model for compressible elastomeric
solids.” Comput. Mech., 18, 339-355.

Arruda, E. M., and Boyce, M. C. (1993). “A three-dimensional constitu-
tive model for the large stretch behavior of rubber elastic materials.”
J. Mech. Phys. Solids, 41, 389—-412.

Bhuiyan, A. R. (2004). “Finite element modeling for nonlinear elastic
response of natural and high damping rubber.” MSc thesis, Bang-
ladesh Univ. of Engineering and Technology, Bangladesh.

Bonet, J., and Wood, R. D. (1997). Nonlinear continuum mechanics for
finite element analysis, Cambridge Univ. Press, Cambridge, U.K.
Boyce, M. C., and Arruda, E. M. (2000). “Constitutive models of rubber

elasticity: A review.” Rubber Chem. Technol., 73, 504-523.

Bueche, F. (1960). “Mechanical degradation of high polymers.” J. Appl.
Polym. Sci., 4, 101-106.

Carr, A. J., Cooke, N., and Moss, P. J. (1996). “Compression behavior of
bridge bearings used for seismic isolation.” Eng. Struct., 18, 351-
362.

Castellani, A., Kajon, G., Panzeri, P., and Pezzoli, P. (1998). “Elastomeric
materials used for vibration isolation of Railaway Lines.” J. Eng.
Mech., 124(6), 614-621.

Chang, C. (2002). “Modeling of laminated rubber bearings using an ana-
lytical stiffness matrix.” Int. J. Solids Struct., 39, 6055-6078.

Charlton, D. J., Yang, J., and Teh, K. K. (1994). “A review of methods to
characterize rubber elastic behavior for use in finite element analysis.”
Rubber Chem. Technol., 67, 481-503.

Chen, Y., and Ahmadi, G. (1992). “Wind effects on base-isolated struc-
tures.” J. Eng. Mech., 118(8), 1708-1727.

Davis, C. K. L., De, D. K., and Thomas, A. G. (1994). “Characterization
of the behavior of rubber for engineering design purposes. 1: Stress—
strain relations.” Rubber Chem. Technol., 67, 716-728.

Dorfmann, A., and Burtscher, S. L. (2000). “Aspects of cavitation dam-
age in seismic bearings.” J. Struct. Eng., 126(5), 573-579.

European Commission (1999). “Highly adaptable rubber isolating system
(HARIS).” Final Technical Rep. Contract No. BRPR-CT95-0072,
Project No. Be-1258.

Fletcher, W. P., and Gent, A. N. (1953). “Non-linearity in the dynamic
properties of vulcanized rubber compounds.” Trans. Inst. Rubber In-
dustry, 29, 266-280.

Fujita, T., Fujita, S., Tazaki, S., Yoshizawa, T., and Suzuki, S. (1990).
“Research, development and implementation of rubber bearings for
seismic isolations.” JSME Int. J., Ser. I, 33, 394—403.

Gendy, A. S., and Saleeb, A. F. (2000). “Nonlinear material parameter
estimation for characterizing hyperelastic large strain models.” Com-
put. Mech., 25, 66-717.

Gent, A. N. (1962a). “Relaxation processes in vulcanized rubber. I: Re-
lation among stress relaxation, creep, recovery, and hysteresis.” J.
Appl. Polym. Sci., 6, 33-441.

Gent, A. N. (1962b). “Relaxation processes in vulcanized rubber. II: Sec-
ondary relaxation due to network breakdown.” J. Appl. Polym. Sci., 6,
442-448.

Higgblad, B., and Sundberg, J. A. (1983). “Large strain solutions for
rubber components.” Comput. Struct., 17, 835-843.

Hamzeh, O. N., Tassoulas, J. L., and Becker, E. B. (1998). “Behavior of
elastomeric bridge bearings: Computational results.” J. Bridge Eng.,
3(3), 140-146.

Hart-Smith, L. J. (1966). “Elasticity parameters for finite deformations of
rubber-like materials.” Z. Angew. Math. Phys., 17, 608—626.

JOURNAL OF ENGINEERING MECHANICS © ASCE / JANUARY 2006 / 63



Herrmann, L. R., Hamidi, R., Shafigh-Nobari, F., and Lim, C. K. (1988a).
“Nonlinear behavior of elastomeric bearings. I: Theory.” J. Eng.
Mech., 114(11), 1811-1830.

Herrmann, L. R., Hamidi, R., Shafigh-Nobari, F., and Ramaswamy, A.
(1988b). “Nonlinear behavior of elastomeric bearings. II: FE analysis
and verification.” J. Eng. Mech., 114(11), 1831-1853.

Herrmann, L. R., Ramaswamy, A., and Hamidi, R. (1989). “Analytical
parameter study for class of elastomeric bearings.” J. Struct. Eng.,
115(10), 2415-2434.

Huber, N., and Tsakmakis, C. (2000). “Finite deformation viscoelasticity
laws.” Mech. Mater., 32, 1-18.

Hwang, J. S., and Ku, S. W. (1997). “Analytical modeling of high damp-
ing rubber bearings.” J. Struct. Eng., 123(8), 1029-1036.

Imbimbo, M., and Luca, A. D. (1998). “FE. stress analysis of rubber
bearings under axial loads.” Comput. Struct., 68, 31-39.

James, A. G., Green, A., and Simpson, G. M. (1975a). “Strain energy
functions of rubber. I: Characterization of gum vulcanizates.” J. Appl.
Polym. Sci., 19, 2033-2058.

James, A. G., and Green, A. (1975b). “Strain energy functions of rubber.
II: The characterization of filled vulcanizates.” J. Appl. Polym. Sci.,
19, 2319-2330.

Jankovich, E., Leblanc, F., and Durand, M. (1981). “A finite element
method for the analysis of rubber parts, experimental and analytical
assessment.” Comput. Struct., 14, 385-391.

Kawabata, S., and Kawai, H. (1977). “Strain energy density functions of
rubber vulcanizates from biaxial extension.” Adv. Polym. Sci., 24,
90-124.

Kawabata, S., Matsuda, M., Tei, K., and Kawai, H. (1981). “Experimental
survey of the strain energy density function of isoprene rubber vulca-
nizate.” Macromolecules, 14, 154—-162.

Kelly, J. M. (1997). Earthquake resistant design with rubber, Springer-
Verlag, London.

Lambert-Diani, J., and Rey, C. (1999). “New phenomenological behavior
laws for rubbers and thermo plastic elastomers.” Eur. J. Mech.
A/Solids, 18, 1027-1043.

Lim, C. K., and Herrmann, L. R. (1987). “Equivalent homogeneous FE
model for elastomeric bearings.” J. Struct. Eng., 113(1), 106-125.

MARC (1996). MSC Software Corporation, Redwood City, Calif.

Mattheck, C., and Erb, D. (1991). “Shape optimization of a rubber bear-
ing.” Int. J. Fatigue, 13, 206-208.

Mooney, M. (1940). “A theory of large elastic deformation.” J. Appl.
Phys., 11, 582-592.

Mori, A., Carr, A. J., Cooke, N., and Moss, P. J. (1996). “Compression
behavior of bridge bearings used for seismic isolation.” Eng. Struct.,
18, 351-362.

Mullins, L. (1969). “Softening of rubber by deformations.” Rubber
Chem. Technol., 42, 339-362.

Mullins, L. (1987). “Engineering with rubber.” Chem. Tech. (Leipzig),
13, 720-7217.

Nicholson, D. W., Nelson, N. W., Lin, B., and Farinella, A. (1998). “Fi-
nite element analysis of hyperelastic components.” Appl. Mech. Rev.,
51, 303-320.

Ogden, R. W. (1972). “Large deformation isotropic elasticity: On the
correlation of theory and experiment for compressible rubberlike sol-
ids.” Proc. R. Soc. London, Ser. A, 328, 567-583.

Payne, A. R., and Whittaker, R. E. (1971). “Low strain dynamic proper-
ties of filled rubbers.” Rubber Chem. Technol., 44, 440-478.

Peng, S. H., and Chang, S. H. (1997). “A compressible approach in finite
element analysis of rubber elastic materials.” Comput. Struct., 62,
573-593.

Peng, T. J., and Landel, R. F. (1972). “Stored energy function of rubber-

64 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JANUARY 2006

like materials derived from simple tensile data.” J. Appl. Phys., 43,
3064-3067.

Quigley, C. J., Mead, J., and Johnson, A. R. (1995). “Large strain vis-
coelastic constitutive models for rubber. II: Determination of material
constants.” Rubber Chem. Technol., 68, 230-247.

Ramberger, G. (2002). “Structural bearings and expansion joints for
bridges.” Structural Engineering Documents 6, International Associa-
tion for Bridge and Structural Engineering, Zurich, Switzerland.

Rivlin, R. S. (1948a). “Large elastic deformations of isotropic materials:
Fundamental concepts.” Philos. Trans. R. Soc. London, Ser. A, 240,
459-490.

Rivlin, R. S. (1948b). “Large elastic deformations of isotropic materials
IV. Further developments of the general theory.” Philos. Trans. R.
Soc. London, Ser. A, 241, 379-397.

Roeder, C. W., and Stanton, J. F. (1983). “Elastomeric bearings: State-of-
the-art.” J. Struct. Eng., 109(12), 2853-2871.

Seibert, D. J., and Schéche, N. (2000). “Direct comparison of some re-
cent rubber elasticity models.” Rubber Chem. Technol., 73, 366-384.

Simo, J. C., and Taylor, R. L. (1982). “Penalty function formulations for
incompressible nonlinear elastics.” Comput. Methods Appl. Mech.
Eng., 35, 107-118.

Taylor, R. L. (2000). FEAP—A finite element analysis program, user
manual, Version 7.3, <http://www.ce.berkeley.edu/~rlt/feap/>, UC
Berkeley.

Treloar, L. R. G. (1944). “Stress—strain data for vulcanized rubber under
various types of deformations.” Trans. Faraday Soc., 29, 59-70.
Treloar, L. R. G. (1975). The physics of rubber elasticity, Clarendon,

Oxford, U.K.

Tschoegl, N. W. (1972). “Constitutive equations for elastomers.” Rubber
Chem. Technol., 45, 60-70.

Valanis, K. C., and Landel, R. F. (1967). “The strain-energy density func-
tion of a hyperelastic material in terms of the extension ratios.” J.
Appl. Phys., 38, 2997-3002.

van den Bogert, P. A. J., and de Borst, R. (1994). “On the behavior of
rubber-like materials in compression and shear.” Arch. Appl. Mech.,
64, 136-146.

Ward, I. M. (1985). Mechanical properties of solid polymers, Wiley, New
York.

Wiraguna, S. I. (2003). “Mechanical behavior of high damping rubber
under shear deformation.” MSc thesis, Saitama Univ., Saitama, Japan.

Wolfram, S. (1999). (1999). The Mathematica Book, 4th ed., Wolfram
Media/Cambridge Univ. Press.

Yamashita, Y., and Kawabata, S. (1992). “Approximated form of the
strain energy density function of carbon-black filled rubbers for indus-
trial applications.” J. Soc. Rubber Ind. (Jpn.), 65, 517-528 (in Japa-
nese).

Yeoh, O. H. (1990). “Characterization of elastic properties of carbon-
black filled rubber vulcanizates.” Rubber Chem. Technol., 63, 792—
805.

Yeoh, O. H. (1993). “Some forms of strain energy function for rubber.”
Rubber Chem. Technol., 66, 754-771.

Yeoh, O. H. (1997). “On the Ogden stain-energy function.” Rubber
Chem. Technol., 70, 175-182.

Yoshida, J., Abe, M., and Fujino, Y. (2004a). “Constitutive model of
high-damping rubber materials.” J. Eng. Mech., 130(2), 129-141.
Yoshida, J., Abe, M., and Fujino, Y., and Watanabe, H. (2004b). “Three-
dimensional finite-element analysis of high damping rubber bearings.”

J. Eng. Mech., 130(5), 607-620.

Zienkiewicz, O. C., and Taylor, R. L. (1996). The finite element method,

4th Ed., McGraw-Hill, New York.



