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Abstract: A simple computational strategy for finite-element implementation of a finite-strain viscohyperelasticity model for rubber-like
materials was developed. The constitutive model has had a strong physical significance because of the explicit consideration of the nonlinear
dependence of viscosity through internal variables (e.g., past maximum overstress and current deformation). To simulate the stress-strain re-
sponse for particular one-dimensional boundary value problems, a scheme for solving the first-order differential equation representing the
viscosity-induced strain-rate effect of rubber was proposed. The scheme was successful in reproducing experimental results obtained from
high-damping rubber specimens. In addition, the wider applicability of the proposed strategy in simulation was tested by verifying the numer-
ical results with independent experiments on full-scale high-damping rubber bearings with different geometries and loading rates. The effect of
shape factor on bearing responses was examined through numerical examples obtained from different finite-element models subjected to the
same load and loading rate. Finally, the proposed computational strategy was applied to locate the regions of stress concentrations in steel plate
laminated rubber expansion joints used widely to transfer reactions at central-hinge locations on balanced cantilever highway bridges. DOI:
10.1061/(ASCE)EM.1943-7889.0000888. © 2014 American Society of Civil Engineers.
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Introduction

General

The use of laminated rubber bearings for seismic isolation in re-
ducing earthquake-induced damages is widely recognized (Kelly
1997). Vulcanized natural rubber or high-damping rubber is com-
monly usedwith alternate layers of steel plates [Fig. 1(c)] to fabricate
such bearings. The steel plates placed in horizontal layers provide
vertical stiffness to resist a superimposed dead load but, at the same
time, ensure the low horizontal shear stiffness of the device. The
horizontal flexibility offered thus by the device is important in
resisting lateral loads caused by earthquakes. In addition, steel plate
laminated rubber expansion joints (Figs. 2 and 3) are often used at the
central hinge locations of balanced cantilever bridges (Spuler et al.
2010). In such arrangements, the expansion joints generally used to
accommodate temperature-induced bridge seating displacements
also transfer the vertical reaction forces arising from the moving
loads to the adjacent spans in service conditions. Two approaches are
followed in the industry to design and shape these devices. The first
approach relies on data obtained from testing the prototype devices,
whereas the other approach follows a rigorous numerical procedure
[e.g., the FEM] that considers geometric and material nonlinearities.

Both approaches have their own limitations; however, the latter one
offers better flexibility in making design iterations. Thus, sophis-
tication in the development and implementation of an adequate
material law to describe the pertinent mechanical behaviors of
rubber-like materials is crucial.

Rate-Dependent Behavior in Rubber

The mechanical responses of rubbers depend strongly on loading
history, current strain, and strain rate [see Amin et al. (2006a),
Bergström and Boyce (1998), Lion (1996), and Miehe and Keck
(2000) for state-of-the-art reviews.]. In high-damping rubber, these
dependencies are strongly nonlinear (Amin 2001). The monotonic
rate-independent response of rubber-like materials is generally
reproduced by rate-independent hyperelasticity models (Mooney
1940; Rivlin and Saunders 1951; Treloar 1944). A detailed review of
the historical development of different hyperelasticity models is
presented elsewhere (Amin et al. 2002; Shariff 2000). To represent
the viscosity-induced strain-rate effect, the total stress is usually
decomposed into the equilibrium response and the overstress re-
sponse. The total strain is decomposed into elastic and inelastic
strains through multiplicative decomposition of the strain tensor
(Lubliner 1973, 1985) (see Fig. 4 for the Zener model). The viscosity
effect is reproduced by a relation between the overstress and the
inelastic strain rate (Huber and Tsakmakis 2000). The equilibrium
and instantaneous responses of the material are defined as the
boundary state responses obtained from a specimen at infinitely slow
and fast rates, respectively.

These two extreme responses define the boundary of a domain in
which viscosity effects come into play. Multistep relaxation (MSR)
tests and monotonic tests at fast rates are recognized as the standard
tests for characterizing these elastic boundary states. Simple re-
laxation (SR) tests are used to characterize the viscosity phenomena
that exist in between the twoboundary states (Amin et al. 2002; Huber
and Tsakmakis 2000). The difference between the current stress and
the equilibrium stress is known as the overstress. Haupt and Sedlan
(2001) assumed a nonlinear dependence of the viscosity on the current
strain, whereas Amin et al. (2006b) proposed a general relationship
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Fig. 1. FE mesh used for numerical simulation: (a) Mesh 1: uniaxial compression; boundary conditions: Node A at bottom surface (2-3 plane) is
restrained in 1-, 2-, and 3-directions; all other nodes at bottom surface (2-3 plane) are free in 2-, 3-directions and restrained in 1-direction; Node B at top
edge is restrained in 2- and 3-directions; all other nodes at top edge are free; displacement is applied along 1-direction; (b) Mesh 2: simple shear;
boundary conditions: all nodes at the bottom edge (parallel to 2-3 plane) are restrained and fixed in 1-, 2-, and 3-directions; all nodes at the top edge
(parallel to 2-3 plane) are restrained in 1- and 3-directions; displacement is applied along 2-direction; (c) Mesh 3: rubber bearing; boundary conditions:
all nodes at the bottom edge (parallel to 2-3 plane) are restrained and fixed in 1-, 2,- and 3-directions; all nodes at the top edge (parallel to 2-3 plane) are
restrained in 1- and 3-directions; displacement is applied along 2-direction; h5 nrtr 1 nst; nr 5 number of rubber layers; ns 5 number of steel plates

Fig. 2. (Color) Replacement of rubber expansion joints of Japan-Bangladesh Friendship Bridge-I (23�31.8589N, 90�42.8139E) built in 1991 over
theMeghna River, Bangladesh (images by A. F. M. S. Amin): (a) hinge points depict the location of expansion joints; (b) replacing the expansion joints
as a part of bridge maintenance works
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between the overstress and the inelastic strain rate of both natural and
high-damping rubber.Experimental evidence reported in these studies
showed the strong dependence of the relation on past maximum
overstress and current strain. The adequacy of the model in repro-
ducing MSR, SR, and monotonic tests in compression and shear
regimes was verified with experimental observations. Furthermore,
the model was also successful in reproducing an independent set of
test results at simple shear and uniaxial compression regimes with
a unique set of parameters. More recently, Bhuiyan et al. (2009)
identified a similar effect in high-damping rubber bearings and
provided a thorough rheological characterization.

Numerical Treatment of Rate-Dependent Phenomena

The experimental identification and subsequent characterization of
the phenomena are recognized to be the primary steps in developing
a rational constitutivemodel and evaluating the parameters. However,
the realization of benefits from such advancements for the design
depends on successful implementation of the model in a finite-
element (FE) procedure. In such a procedure, the nonlinear equa-
tions are solved in a linearized form to ascertain the stress field within
the device (Simo et al. 1985; Simo 1987; Simo and Taylor 1991) by
solving a boundary-value problem. Amin et al. (2006a) provided
a state-of-the-art review on the FE analysis of rubber devices. As the
primary step, they also implemented an improved hyperelasticity
model into FEAP 8.1, which is a general-purpose open-source FE
software (Taylor 2006) partially documented in Zienkiewicz and
Taylor (2006). The capability of the improved hyperelasticity model
in simulating rate-independent responses (e.g., equilibriumand elastic
responses) was tested in that study by comparing experimental results
in compression and shear regimes. Hasanpour and Ziaei-Rad (2008)
presented a viscohyperelasticitymodel and the computational strategy
for simulating the rate-dependent response of polymers at large
strains. The model was adequate in reproducing the equilibrium and
instantaneous responses but completely failed to represent the stress
relaxation phenomenon.

Nevertheless, simulation of relaxation phenomenon is one of the
major attainable benchmarks in assessing the worthiness of a vis-
coelasticity model. In a later communication, Hasanpour et al.
(2009) further discussed the difficulty of making an analytical
calculation of the tangent modulus, which is an essential step in
Newton’s method. Dal and Kaliske (2009) presented a thorough
numerical treatment to implement the Bergström and Boyce vis-
coelasticity model (Bergström and Boyce 1998) in a FE code.
However, the model, which had a micromechanics-based in-
spiration, was found by the authors not to be applicable for general
rate-dependent cases (e.g., simulation of devices using high-
damping rubber). On the other hand, the fundamental promise
demonstrated by the viscohyperelasticity model (Amin et al. 2006b)
in analytical cases in describing the viscosity effect in high-damping
rubber and natural rubber is yet to be explored in detail for solving
boundary value problems in a FE technique. Nevertheless, the
classical measurements presented there still motivate current
researchers to develop and implement new models (Johlitz et al.
2007, 2008; Spathis and Kontou 2008).

Fig. 3. As-built geometric details of the expansion joint of Japan-Bangladesh Friendship Bridge-I (23�31.8589N, 90�42.8139E) over the Meghna
River, Bangladesh: (a) top view; (b) bottom view; (c) longitudinal sectional view (Section X-X)

Fig. 4. Zener model
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Objectives and Methodology

The potential of the viscoelasticity model proposed in Amin et al.
(2006b) motivated the authors to outline a computational strategy for
FE analysis of rubber bearings and expansion joints. To maintain
simplicity, the scopeof the currentworkwas restricted to the simulation
of a specific one-dimensional problem. The match between the sim-
ulation results obtained using the proposed strategy on full-scale rubber
bearings and the independent experiments was also checked. Finally,
numerical experiments on rubber bearings with different shape factors
and steel plate laminated rubber expansion joints were conducted to
indicate the applicability of the proposed method to a wider area.

Constitutive Modeling

General Framework

A three-parameter Maxwell model (Zener model), as shown in
Fig. 4, was used tomodel the rate-dependent behavior of rubber. The
total stress was decomposed into two parts (i.e., the rate-independent
equilibrium part and the rate-dependent overstress part). To model
the rate-dependency phenomenon, the hyperelasticity models were
required to be combinedwith the rate-dependentmodel. In thiswork,
the improved hyperelasticity model proposed byAmin et al. (2006a)
was combinedwith the rate-dependentmodel (Huber andTsakmakis
2000) to formulate the total stress-strain relation. Eq. (1) represents
the strain energy density function,W , expressed as a function of the
invariants of the deformation tensor of an incompressible and iso-
tropic elastic material

WðI1, I2Þ ¼ C5ðI12 3Þ þ C3

N þ 1
ðI12 3ÞN þ C4

M þ 1
ðI1 2 3ÞM

þ C2ðI22 3Þ (1)

where C2, C3, C4, C5, M, and N 5 material parameters. The
invariants of the left Cauchy-Green tensor can be written in terms of
the principal stretches li (i5 1, 2, 3)

I1 ¼ trB ¼ l21 þ l22 þ l23

I2 ¼ 1
2

h
ðtrBÞ22 trðBBÞ

i
¼ ðl1l2Þ2 þ ðl2l3Þ2 þ ðl3l1Þ2

From Truesdell and Noll (2004), the Cauchy stress T can be
expressed as

T ¼ 2p1þ TE (2)

TE ¼ 2
∂W
∂I1

B2 2
∂W
∂I2

B21 (3)

where 1 5 identity tensor; p 5 Lagrange multiplier that can be
determined from the boundary condition; and the subscriptE5 extra
stress.

From themodel structures shown in Fig. 4, the extra stress tensor
can be written as the sum of the equilibrium part TðEÞ

E and the
overstress part TðOEÞ

E

TE ¼ TðEÞ
E þ TðOEÞ

E (4)

with

TðEÞ
E ¼ 2

∂WðEÞ

∂I1B
B2

∂WðEÞ

∂I2B
B21 (5)

TðOEÞ
E ¼ 2

∂WðOEÞ

∂I1Be

Be2
∂WðOEÞ

∂I2Be

B21
e (6)

where B5FFT ; Be 5FeFT
e ; and I1B and I2B 5 first and second

invariants of the left Cauchy-Green tensorB. The subscript e denotes
the quantities related to Fe.

Following the concept of Huber and Tsakmakis (2000), the rate
of the left Cauchy-Green deformation tensor can be expressed as

_Be ¼ BeLT þ LBe 2
2
h
Be

�
P̂E 2 P̂

ðEÞ
E

�
(7)

The superimposed dot indicates the material time derivative; h
5 viscosity function; PE 5Mandel stress tensor; and L5 velocity
gradient expressed as

L ¼ _FF21 (8)

Evolution of Nonlinear Viscosity

Amin et al. (2006b) followed the general constitutive theory based
onHuber and Tsakmakis (2000) to propose an explicit description of
the evolution equation of nonlinear viscosity by analyzing the ex-
perimental data in compression and shear regimes. Eq. (9) represents
the constitutive equation of viscosity of the power law type (Amin
et al. 2006b) in a general three-dimensional (3D) form

D̂i ¼

���P̂ðOEÞ
E

���d
h0p

dkBkwP̂
ðOEÞ
E (9)

where w, d, and h0 5 material parameters to be determined; and
kvk5 ffiffiffiffiffiffiffiffiffiffiffi

v ×v
p

5magnitude of a tensor,v, wherev5 an example
tensor quantity. The closed form of the evolution equation of the
constitutive equation of nonlinear viscosity can be obtained from
Eq. (9)

1

h
�
P̂
ðOEÞ
E ,B

� ¼ 1
h0

 ���P̂ðOEÞ
E

���
p

!d

kBk2w (10)

In Eqs. (9) and (10), the constant p5 ð1 MPaÞ was introduced for
dimensional reasons.

Computational Strategy for Viscosity Effect

In analyzing rubber bearings and expansion joints, uniaxial com-
pression and simple shear are the relevant deformation modes to
consider. The first-order differential equation presented in Eqs. (7)
and (10) for the nonlinear evolution of viscosity was decomposed
into a one-dimensional form, as discussed in the next two sub-
sections. A standard numerical method was applied to solve the one-
dimensional rate equations. The approach is novel for its inherent
simplicity but possesses a limitation in solving a problem for arbitrary
or unknown deformation modes (Bhuiyan et al. 2007; Hossain 2007).

Uniaxial Compression Loading
Assuming rubber to be an incompressible material, the total de-
formation gradient tensor can be written as

F ¼

2
66664
l 0 0

0
1ffiffiffi
l

p 0

0 0
1ffiffiffi
l

p

3
77775 (11)

© ASCE 04014169-4 J. Eng. Mech.
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Thus, the left Cauchy-Green strain deformation tensor can be
evaluated as

B ¼ FFT ¼

2
66664
l2 0 0

0
1
l

0

0 0
1
l

3
77775 (12)

Similarly, for the intermediate spring as shown in Fig. 4, one obtains

Fe ¼

2
666664

le 0 0

0
1ffiffiffiffiffi
le

p 0

0 0
1ffiffiffiffiffi
le

p

3
777775 and Be ¼ FeFT

e ¼

2
666664

l2e 0 0

0
1
le

0

0 0
1
le

3
777775

(13)

The rate of deformation gradient tensor is given as

L ¼ _FF21 ¼ _l

2
6666664

1
l

0 0

0 2
1
2l

0

0 0 2
1
2l

3
7777775

and

_Be ¼ _le

2
666664

2le 0 0

0 2
1
l2e

0

0 0 2
1
l2e

3
777775

(14)

Table 1. Elasticity Parameters

Responses C2 (MPa) C3 (MPa) C4 (MPa) C5 (MPa) M N

Equilibrium 0.145 1.182 25:297 4.262 0.06 0.27
Instantaneous 0.166 2.477 211:689 9.707 0.06 0.27
Overstress 0.021 1.295 26:392 5.445

Table 2. Viscosity Parameters

Parameter Value

h0 (MPa) 1.63
d 1.46
w 2.29

Fig. 5. Effect of 1-direction mesh refinement on stress response in Mesh 3: (a) effect on T11 stress; (b) effect on T12 stress; 2D coarse mesh: a single
rubber layer [la : 240 mm, hð5trÞ : 5 mm, shape factor 12, Table 3] is divided into 24 elements in 2-direction and one element in 1-direction; 2D fine
mesh: a single rubber layer [la : 240 mm, hð5trÞ : 5 mm, shape factor 12, Table 3] is divided into 24 elements in 2-direction and five elements in
1-direction; 3Dmesh: a single rubber layer [la : 240 mm, lb : 240 mm, hð5trÞ : 5 mm, shape factor 12, Table 3] is divided into 24 elements in 2-direction
and 3-direction and one element in 1-direction; shape factor5 lalb=2trðla 1 lbÞ

© ASCE 04014169-5 J. Eng. Mech.
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Eq. (7) yields

BeLT ¼ BeL ¼ _l

2
66666664

l2e
l

0 0

0 2
1

2lle
0

0 0 2
1

2lle

3
77777775

and

�
T2TðEÞ

�D
5

2
64TðOEÞ

11 0 0

0 TðOEÞ
22 0

0 0 TðOEÞ
33

3
75
D

(15)

Now, substituting Eqs. (14) and (15) into Eq. (7) yields

_le

2
666666664

2le 0 0

0 2
1
l2e

0

0 0 2
1
l2e

3
777777775
5 _l

2
666666664

l2e
l

0 0

0 2
1

2lle
0

0 0 2
1

2lle

3
777777775

þ _l

2
66666664

l2e
l

0 0

0 2
1

2lle
0

0 0 2
1

2lle

3
77777775
2

2
h0

���TðOEÞ��
p

�d

kBk2w

�

2
6666664

l2e 0 0

0
1
le

0

0 0
1
le

3
7777775

2
6664
TðOEÞ
11 0 0

0 TðOEÞ
11 0

0 0 TðOEÞ
11

3
7775
D

(16)

Considering the first normal term that corresponds to the loading
condition and viscosity at each strain level constant, the relevant rate
equation is isolated as

Table 3. Geometry of Rubber Bearings with Different Shape Factors

Shape factor a (mm) B (mm) ts (mm) tr (mm) nr ns

6 240 240 2 10 6 5
12 240 240 2 5 6 5
15 240 240 2 4 6 5
24 240 240 2 2.5 6 5
30 240 240 2 2 6 5

Fig. 6. Numerical simulation of stress relaxation phenomena of high damping rubber under compression and shear: (a) at l1 5 0:5 for Mesh 1; (b) at
g5 1:00 for Mesh 2 (Fig. 1)

© ASCE 04014169-6 J. Eng. Mech.
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2 _lele52
_l

l
l2e2

4
3
TðOEÞ
11 l2e

1
h0

���TðOEÞ��
p

�d
jlj22w (17)

_le ¼ 2
_l

l
le 2

2
3
TðOEÞ
11 le

1
h0

���TðOEÞ��
p

�d
jlj22w (18)

Eq. (18) is solved by a standard numerical method with adequate
solution steps.

Simple Shear Loading
The total deformation gradient and the left Cauchy-Green tensor are
given by the following expressions:

F ¼
2
4 1 g 0

0 1 0

0 0 1

3
5 and B ¼ FFT ¼

2
64 1þ g2 g 0

g 1 0

0 0 1

3
75 (19)

Similarly, for intermediate spring, these two quantities can be
written as

Fe ¼
2
4 1 ge 0

0 1 0

0 0 1

3
5 and Be ¼ FeFT

e ¼

2
64 1þ g2e ge 0

ge 1 0

0 0 1

3
75
(20)

The velocity gradient and the rate of the elastic left Cauchy-Green
tensor read as

L ¼ _FF21 ¼
2
4 0 _g 0

0 0 0

0 0 0

3
5 and _Be ¼

2
4 2ge _ge _ge 0

_ge 0 0

0 0 0

3
5
(21)

Using Eq. (17), Eq. (6) yields

BeLT ¼
2
4ge _g 0 0

_g 0 0

0 0 0

3
5 and LBT

e ¼
2
4ge _g _g 0

0 0 0

0 0 0

3
5 (22)

�
T2TðEÞ

�D
5

2
664
TðOEÞ
11 TðOEÞ

12 0

TðOEÞ
21 TðOEÞ

22 0

0 0 TðOEÞ
33

3
775
D

(23)

Now, substituting Eqs. (21) and (22) into Eq. (7) yields2
64
2ge _ge _ge 0

_ge 0 0

0 0 0

3
755
2
64
ge _g 0 0

_g 0 0

0 0 0

3
75þ

2
64
ge _g _g 0

0 0 0

0 0 0

3
75

2
2
h0

���TðOEÞ��
p

�d

kBk2f

2
64
1þ g2e ge 0

ge 1 0

0 0 1

3
75

�

2
6664
TðOEÞ
11 TðOEÞ

12 0

TðOEÞ
21 TðOEÞ

22 0

0 0 TðOEÞ
33

3
7775
D

(24)

Considering the off-diagonal terms that correspond to the simple
shear loading condition, the relevant rate equation is isolated as

_ge5 _g2
4
3
ge
h0

TðOEÞ
12

 ���PðOEÞ
12

���
p

!d

jgj22f (25)

In this context, the effects of the normal components of Eq. (24) are
ignored to avoid complexity. This simplification also conforms to

Fig. 7. Simulation of strain-rate dependency effects on rubber blocks,
and comparison with experiments in high damping rubber: (a) simu-
lation of monotonic compression experiments at different strain-rates
using Mesh 1; (b) simulation of simple shear experiments at different
strain-rates using Mesh 2
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the experimental conditions (e.g., simple shear). Eq. (25) is solved
by a standard numerical method with adequate solution steps.

Material Parameters

Eq. (1) contains the material parameters C2, C3, C4, C5,M, and N to
represent the strain energy density function for the elasticity re-
sponse; Eq. (10) includes the constants w, d, and h0, which belong
to the nonlinear viscosity function. Tables 1 and 2 present the
numerical values of the material parameters for high-damping
rubber. To identify the parameters (C2, C3, C4, C5, M, and N) of
the hyperelasticitymodel [Eq. (1)], the experimental data obtained in
the compression and shear regime were used, along with a scheme
involving the least-squares method to minimize the residuals (Amin
et al. 2006a). The viscosity parameters were determined by applying

the least-squares method on the D̂i versus P̂
ðOEÞ
E

.
P̂
ðOEÞ
E

���
max

re-

lationship and the kBk versus P̂ðOEÞ
E

���
max

relationship so that Eq. (9)

is satisfied, where P̂
ðOEÞ
E

���
max

is the past maximum overstress that

existed just at the very beginning of the relaxation process, and kBk
is the magnitude of the current deformation. For details, please refer
to Amin et al. (2006b).

Model Verification

The solution strategy to compute the evolution in Eq. (7) as de-
scribed in an earlier section was incorporated into a versatile FE
program, FEAP (Taylor 2006). Three-dimensional (3D) FE analysis
was carried out using the FE models of the specimens as shown in
Figs. 1(a and b) for compression and simple shear, respectively.
Simulation results were checked with experiments to verify the
numerical accuracy. To check the effect of the mesh size on the
results, a mesh sensitivity analysis was carried out. The 3D models
were also reduced to two dimensions for comparison. An eight-node
brick element was used to model the rubber and steel. Both the
geometric and the material nonlinearities of the rubber layers were
considered in the analysis. Steelwas considered to be linearly elastic.

Mesh Sensitivity

The convergence of the FE mesh with the smaller mesh size is
verified in Fig. 5. The comparison of responses in Fig. 5(a) for
uniaxial compression show the inadequacy of a two-dimensional
(2D) mesh in the simulation, whereas a 3D mesh with 24 elements
was found to be reasonable. In Fig. 5(b), the simple shear case is
presented. A 2D coarse mesh with 24 elements in one direction was
found to be sufficient for the tested shape factor. A mesh sensitivity
test was conducted on a single-layer rubber sheet having a shape
factor of 12 and the dimensions given in Table 3 and Fig. 5. Here, the
shape factor is defined as

Shape factor ¼ lalb=2trðla þ lbÞ (26)

where lalb 5 loaded area of the bearing; and 2trðla 1 lbÞ5 load-free
area of the bearing (Fig. 1).

Verification with Experiments

The adequacy of the proposed computational strategy and the FE
code hence prepared were verified by comparing the simulation
results obtained using the converged mesh size with the results from
SR tests. In a SR test, a rubber specimen maintains a desired level of
strain at a constant strain rate, and the stress required to maintain this
strain is measured for the requisite period of time (relaxation time).
The maximum stress occurs when the deformation takes place, and
the stress decreases gradually with time from themaximum value. A
stretch rate of 0:5=s followed by a relaxation time of 10 min with
a stretch level of 0.5 was used in the uniaxial compression mode of
the SR tests; however, the shear strain rate of 0:5=s was followed by
10 min with a constant strain level of 2.50 for the simple shear mode
in the SR tests (Amin et al. 2002, 2006b).

Fig. 6(a) presents the comparison for uniaxial compression, and
Fig. 6(b) the same for the simple shear case. A series of monotonic
compression tests at different constant stretch rates up to a 0.5 stretch
level was carried out. Constant stretch-rate cases within the range of
0:001e0:96=s were considered in the test. The simple shear tests
were carried out in a fashion similar to that of the uniaxial com-
pression tests; however, the shear strain rates were within the range

Fig. 8. (Color) Numerical simulation of stress response obtained from high damping rubber: (a) stress contours obtained using Mesh 1 under uniaxial
homogeneous compression, l1 5 0:9, _l5 0:001=s; (b) stress contours obtained using Mesh 2 under simple shear, g5 0:20, _g5 0:05=s (stress is in
megapascals)
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of 0:05e0:5=s and the shear strain was increased to 2.50 (Amin et al.
2002, 2006b). The agreement between the experiment and the
simulation during the long-term stress relaxation was excellent.
The simulation performance in between the instantaneous and the
equilibrium states, especially in the first 20 s of the SR history as
presented here, seems to be distinctly improved compared with that
presented in Hasanpour and Ziaei-Rad (2008) for their data. The
simulation of monotonic compression and simple shear experi-
ments are compared with experiments, as shown in Fig. 7. The
correlation between the simulation and the experimental results
is apparent for the investigated strain-rate cases. At a slower strain
rate, the simulation results have a better conformity with those of

the experiments, but at a faster strain rate, they do not agree so well.
Fig. 8 presents the stress contour for the two deformation cases. The
homogeneous deformations both in uniaxial compression and in
simple shear modes are obtained from simulation. The observation
conforms directly to the experimental boundary condition.

Finally, the simulation of shear stress-strain response obtained
from a prototype bearing with a shape factor of 12 was compared
with experiments, as shown in Fig. 9. The comparison was inde-
pendent of its kind as long as the test data points presented in Fig. 9
were not used for identifying the parameters (Tables 1 and 2).
Nevertheless, an excellent correlation between the simulation and the
experiments is clearly visible. The respective contours for displace-
ment and shear stress are presented in Fig. 10. The contours are
reasonably converging, informative, and also indicate the regions
where large displacement and stress concentration have taken place.

Numerical Experiments

The verification results presented in the preceding sections offer
reasonable confidence in conducting numerical experiments within
the scope of the proposed strategy. In this context, this section
provides information about the shape factor effect of bearing on
a stress field in a steel plate laminated rubber expansion joint.

Shape Factor Effect in Laminated Rubber Bearings

Fig. 11 presents the shear responses of the bearing obtained from
bearings with different shape factors (Table 3). The trend of an in-
crease in response for the bearings with a large shape factor is no-
ticeable in the figure. For large shape factors, the shear stiffness of the
bearing increases at a nonproportional rate. Furthermore, in addition
to the nonlinearity in the response at low, moderate, and large strain
levels depicted by the hyperelasticity relation [Eq. (1)], the influence
of viscosity on the system’s response is also perceivable. All this
information supplements the work of Imbimbo and De Luca (1998)
for uniaxial compression and Matsuda (2004) for shear deformation.

Steel Plate Laminated Rubber Expansion Joints

Figs. 2 and 3 present the as-built basic geometry of a steel plate
laminated rubber expansion joint used in a bridge in Bangladesh.
Replacement of such joints on the bridge deck requires the bridge to
close and is therefore considered to be a major repair work. The

Fig. 9. Comparison of simulation results with experiments obtained in
a high damping rubber bearing (data from Bhuiyan et al. 2009); bearing
dimension: la : 240 mm, lb : 240 mm, tr : 5 mm, ts : 2:3 mm, nr : 6, ns : 5,
h : 40 mm, shape factor 12; applied strain rate, _g5 1:5=s;Mesh 3with 92
elements was used in simulation; shape factor5 lalb=2trðla 1 lbÞ

Fig. 10. (Color) Numerical simulation of stress response obtained from high damping rubber bearing (Fig. 6): (a) displacement contours and (b) stress
contours at g5 0:20, _g5 0:75=s (stress is in megapascals); Mesh 3 with 92 elements was used in simulation

© ASCE 04014169-9 J. Eng. Mech.
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separation of the bottom layer of rubber from the steel plate is found
to initiate the damage of the expansion joints. Fig. 12 presents the
indicative interfacial stress field of such a typical expansion joint
obtained using the simulation results. The high-stress-concentration
regions located around the steel plate boundaries are shown as stress
contours. The 3D solid elements are used to model the rubber and

steel layers. A loading configuration combined with compression and
shear loadings is used in the FE simulation. However, to remain in
line with the leading objective of this essay, further complexities
associated with truly understanding and modeling the interface
phenomenon between rubber and steel in detail were avoided. In-
stead, an absolute bonding between the rubber and steel plate was
assumed. Such a simplification may weaken the precise assessment
of stresses in stress concentration zones because additional effects
in the FE model (e.g., frictional slip, shear, adhesion, elastic mis-
match, and so forth) that may act in those zones are ignored. Yet the
resulting qualitative high stress concentration regions located
around the interface of the rubber and steel layers as obtained from
the performed simulation closely conform to the line of failures
observed in the field.

Conclusion

Aconstitutivemodel of viscohyperelasticity for rubberwas included
in a computational strategy to solve boundary value problems under
compression and simple shear. The development avoided rigorous
mathematical manipulations and therefore seemed suitable for use as
a design aid. However, additional attempts were made in the work to
reassure the readers of the adequacy of such a simplification in
reproducing experimental results from rubber specimens and rubber
bearings for the relevant deformation modes. The developed code
was used to conduct numerical experiments on rubber bearings with
different shape factors and rubber expansion joints. The information
obtained regarding this effect conformed to other published results
and therefore, is also useful at the design desk.
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