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Abstract: The eight-chain model, also known as Arruda-
Boyce model, is widely used to capture the rate-inde-
pendent hyperelastic response of rubber-like materials. 
The parameters of this model are physically based and 
explained from micromechanics of chain molecules. 
Despite its excellent performance with only two material 
parameters to capture bench measurements in uniaxial 
and pure shear regime, the model is known to be signifi-
cantly deficient in predicting the equibiaxial data. To ame-
liorate such drawback, over the years, several modified 
versions of this successful model have been proposed in 
the literature. The so-called full-network model is another 
micromechanically motivated chain model, which has 
also few modified versions in the literature. For this study, 
two modified versions of the full-network model have 
been selected. In this contribution, five modified versions 
of the Arruda-Boyce model and two modified versions of 
full-network model are critically compared with the clas-
sical eight-chain model for their adequacy in represent-
ing equibiaxial data. To do a comparison of all selected 
models in reproducing the well-known Treloar data, the 
analytical expressions for the three homogeneous defor-
mation modes, that is, uniaxial tension, equibiaxial 
tension, and pure shear have been derived and the per-
formances of the selected models are analysed. The com-
parative study demonstrates that modified Flory-Erman 
model, Gornet-Desmorat (GD) model, Meissner-Matějka 
model, and bootstrapped eight-chain model predict well 
the three deformation modes compare to the classical 
eight-chain model.
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1  Introduction
Rubber-like materials have enormous applications, espe-
cially in industrial and engineering fields, such as tires, 
engine mounts, seals, conveyor belts, base isolations for 
protecting buildings and bridges from devastating earth-
quakes [1–5]. Such wide range of applications of rubbers 
makes the rubber mechanics as one of the major active 
fields of research in last several decades. Especially, the 
fast-growing numerical techniques such as the finite 
element method facilitate sophisticated design and analy-
sis for complex large strain three-dimensional elastomeric 
components. In the development of numerical models, a 
simple but advanced constitutive model to capture multi-
axial data is an essential ingredient. The large deformabil-
ity together with recoverability of rubber-like materials 
are well known for their highly nonlinear load-deforma-
tion behavior. These materials are generally modeled by 
considering homogeneous, isotropic, incompressible or 
nearly incompressible, geometrically and physically non-
linear (visco) elastic solids. Such idealizations are also 
supported by experimental data [6, 7].

In the literature [8, 9], elastomeric material models 
are generally classified into two main categories: purely 
phenomenological- and micromechanical-based network 
models. The micromechanically motivated network 
models, on the one hand, are based on the statistics of 
cross-linked long chain molecules [8] and the phenom-
enological models, on the other hand, involve invariant or 
principal stretch-based macroscopic continuum formula-
tions generally having polynomial structures. The govern-
ing parameters appearing in the proposed expressions of 
the energy functions of the phenomenological models do 
not have, in most of the cases, any physical interpretation. 
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The three-chain, four-chain, eight-chain, full network 
models, tube-model, extended-tube model, Flory-Erman 
model, micro-macro unit sphere model, and the Kroon 
model are well-known micromechanically inspired models, 
which can be used for moderate to large elastic deforma-
tions of polymeric materials, see for example, Boyce and 
Arruda [8], Arruda and Boyce [10], Miehe et al. [11], Hossain 
and Steinmann [9]. Some well-known phenomenologi-
cal models are Neo-Hooke, Mooney-Rivlin, Ogden, Gent, 
Yeoh, Attard, Shariff, Hart-Smith, van der Waals, Lopez-
Pamies, Pucci-Saccomandi, Carroll, etc., for more details, 
see Hossain and Steinmann [9] and Steinmann et al. [12].

As mentioned earlier, numerous constitutive models 
have been proposed during the last several decades to 
describe the elastic response of elastomers, but only a few 
of them are able to satisfactorily reproduce experimental 
data for different deformation modes, that is, uniaxial and 
biaxial extensions, simple and pure shears. According to 
Marckmann and Verron [13], the promising candidate 
for the best model will be the one that can describe the 
complete behavior of elastomers with a minimal number 
of material parameters that can be determined from 
explicit experimental data without facing any difficulty, 
for example, instability. Marckmann and Verron [13], after 
comparing 20 models, placed the extended tube model 
[14], Shariff model [15], micro-macro unit sphere model 
[11], and Ogden [16, 17] model at the top of their ranking 
list. Earlier, Boyce and Arruda [8] conducted an excellent 
review on several hyperelastic models where they utilized 
Treloar’s experimental data for comparison of three type 
of deformations (uniaxial, biaxial, and pure shear).

The eight-chain model is a classical micromechani-
cally motivated constitutive model for polymeric materi-
als, where the governing parameters have direct links to 
the micromechanics of the polymer molecular structures. 
With only two material constants, this model excellently 
captures major classical experimental data available in 
the literature. Despite its excellent performance to capture 
the uniaxial and pure shear data in the case of Treloar, 
the model prediction faces a significant deficiency to 
calibrate the equibiaxial data [8, 18]. Several modified 
versions of this model were proposed over the last two 
decades to show a better performance in the equibiaxial 
range. Some variants are of structural types, whereas the 
extended or modified parts of some other variants are 
based purely on phenomenological consideration, cf. [19]. 
For the sake of modifications over the classical one, some 
models increase the number of parameters to fit the data, 
for example, Bechir model [20], whereas some remain with 
the two parameters, for example, the bootstrapped eight-
chain model [18]. Some well-known modified versions of 

the Arruda-Boyce model are the modified Flory-Erman 
model [8,  21], Gornet-Desmorat (GD) model [19], boot-
strapped eight-chain model [18], Bechir model [20], 
Meissner-Matejka model [22], and the Kroon model [6]. 
When a modified model is proposed aiming to show better 
results in contrast to the original eight-chain model, the 
modified version is usually compared with the original 
one but the comparison among the variants of the eight-
chain model are not demonstrated so far in the literature. 
Therefore, such comparative study can work as a guideline 
for a beginner who wants to work in rubber mechanics to 
choose an appropriate model from several variants.

The full-network model is also a micromechanically 
inspired model where polymer chains are assumed to be 
randomly oriented in space. Due to the computational 
cost for the integration over a sphere, either analytically or 
numerically, several simplified approaches for this model 
have been proposed in the literature [23–25] where analyt-
ical or numerical integration over the sphere is bypassed. 
For this study, we have selected the modified full-network 
model due to Wu and Giessen [23] and the another one 
that is proposed in Zuniga and Beatty [24]. The aim of the 
current study is to present a comparative study among all 
modified versions so far available in the literature, at least 
to the best of the author’s knowledge.

The paper is structured as follows: in Section 2 we 
briefly review the general framework for the derivation of 
(semi) analytical stress-strain relations from arbitrary free 
energy functions for the homogeneous cases. In Section 3, 
the analytical formulations for the three homogeneous 
deformation modes, that is, uniaxial tension (UN), equibi-
axial tension (EB), and pure shear (PS) are derived for 
all selected models. These are necessary to evaluate the 
performance of all chosen models in reproducing the 
experimental data provided by Treloar [26]. To this end, 
a standard fitting tool is applied to calculate the optimal 
model parameters with respect to each set of Treloar’s 
data. Section 3 also presents a comparative study on six 
modified models along with the original eight-chain and 
full-network models. Finally, concluding remarks close 
the paper.

2  Analytical formulations
Concerning comparison of a novel model with the existing 
one (s), most of the authors used constitutive (semi) ana-
lytical expressions and the classical Treloar data. Since 
these data are given in pairs of principal stretches λi and 
principal 1st-Piola-Kirchhoff (PK) stresses Pi for different 
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deformation modes, for example, UN, EB, and PS, the ana-
lytical formulations for the principal 1st-Piola-Kirchhoff 
(PK), that is, Pi(λi) need to be derived from the particular 
free energy function. Then, in order to compare the ana-
lytical expression with the experimental data, an optimal 
set of material parameters for each model and a particular 
deformation mode has to be identified. For the parameter 
identification, different optimization techniques can be 
used. The material investigated by Treloar is characterized 
as isotropic and incompressible, a case for which princi-
pal stretches and 1st-PK stresses are related by
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where p denotes the hydrostatic pressure that has to be 
determined from appropriate boundary conditions, for 
details see [8, 9]. For the case of invariant based models, 
that is, ( )1 2, ,I IΨ Ψ= �  Eq. (1) leads to
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Using Eqs. (1) and (2) we derive the required analyti-
cal formulations for the three homogeneous deformation 
modes. For further details, see Hossain and Steinmann 
[9] and Steinmann et  al. [12]. To identify the material 
parameter set for each model, an open-source computer 
code, TRESNEI is used. The code is suitable for bound-
constrained nonlinear least-square problems, cf. [27]. For 
the validation of each model, each set of optimal mate-
rial parameters for UN, EB, and PS is used to compute 
the response of the other two deformation modes. Each 
subsection contains the corresponding figures that also 
contain the errors between (i) each experiment and its 
optimal fit, for example, Error(UN-fit) and (ii) the simu-
lations of the other deformation modes and their respec-
tive measurements, for example, Error(EB-sim). All 

error calculations have been performed according to the 
relation below
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that is, sum up the squared differences between fitted/
simulated and measured first Piola-Kirchhoff stresses, 
respectively, averaged by the number of data points M 
(stretches) available for each deformation mode.

3  �Comparative study: model 
performances

3.1  Eight-chain model

In this model, the cuboid volume element, cf. Figure 1 
is assumed to have edges parallel to the principal direc-
tions, which is composed of eight chains (hence the name 
eight-chain model) oriented in the diagonals from the 
center of the volume to its corners. The relation between 
edge length a0 of the cuboid and the chain length r0, in the 
undeformed state, is given by simple geometric relations, 

0 0
2 ,
3

a r=  wherein 0r l N=  is denoted as the end-to-end 

distance of an unstretched chain. In current deformed 

state it reads: -1 2 2 2
0 1 2 33 ,r r λ λ λ= + +  where λ1, λ2, λ3 are 

the principal stretches of the right Cauchy-Green tensor 
C = F T F, F being the deformation gradient. By defining the 
mean value of the stretch λc, which is required to deter-
mine the expression for the macroscopic free energy, we 
obtain
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Figure 1: Eight-chain model: initial and deformed chain orientations and stretches.
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In Eq. (4), I1 is the first invariant of C, that is, I1 = trC. 
Inserting the Langevin statistics of a single chain, the free 
energy can be obtained as

	
8 , ln ,

sinh ch c rN γ
Ψ µ γλ

γ

  
= +      �

(5)

with the relative chain stretch 1
, ,

3
c

c r

I
NN

λ
λ = =  where 

μ, N, γ are the shear modulus, the number of chain seg-
ments per chain and the inverse Langevin function, 
respectively. It is revealed that this model accurately 
captures the ultimate strain of network deformation 
while requiring only two material parameters, the shear 
modulus (μ), and the number of segments per chain 
(N). Due to the inherent micromechanical explanations 
in defining these two material parameters, such consti-
tutive framework is often referred a micromechanically 
motivated model.

The analytical Pi(λi)-relations for the three deforma-
tion modes UN, EB, and PS, which are required to check 
the performance of the model on the Treloar data, are 
obtained from Eq. (1) as
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Note that in approximating the inverse Langevin func-
tion (γ), the Padé approximation is applied due to its supe-
rior performance over other approximation procedures, 

that is, 
2

-1 , 
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c r c r
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λ
γ λ λ

λ
= ≈L  cf. [11]. By calibrating the 

UN, EB, and PS equations to the corresponding Treloar 
data, the optimal material parameters are estimated:

0.264 MPa,  0.358 MPa, 0.311 MPa,
25.60, 30.26, 51.32.

UN EB PS

UN EB PSN N N
µ µ µ= = =

= = =

The optimal material parameters obtained by using 
analytical expressions are utilized to simulate the experi-
mental data of the other two deformation modes and their 
corresponding errors with respect to the Treloar data are 
calculated. The results, cf. Figure 2 are obtained by insert-
ing the Padé approximation of the inverse Langevin func-
tion in the free energy function. It is clear from the Figure 2 
that with a least number of material parameters, that is, 
two, this model produces better results in all deformation 
modes.

3.2  Modified Flory-Erman model

In most of the micromechanically inspired models, 
authors derive the energy functions by considering only 
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Figure 2: Performance of the eight-chain model on the Treloar data. The fittings and simulations in two deformation modes (UN and EB) are 
good to excellent except in the pure shear case where the prediction fails to reproduce the S-shape of uniaxial case at high strains. Uniaxial 
simulation and fitting are almost concident (left), whereas equibiaxial simulation overestimates the Treloar data.
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the contributions from the cross-linking of polymer 
chains, whereas the contributions due to entanglements 
have been neglected. Boyce and Arruda [8] proposed a 
modification of their original model by adding a con-
straint term devised by Flory and Erman [21]. The assump-
tion of Flory and Erman is that a long macromolecule 
network consists of numerous chain connection points, 
which are constrained from phantom characteristics due 
to the presence of neighbouring chains. As a result, the 
elastic strain energy of the network is originated from two 
contributions, that is, the phantom (Ψph) and the topologi-
cal constraint (Ψct) contributions as

	 .ph ctΨ Ψ Ψ= + � (9)

Flory and Erman [21] derived the phantom part 
of the energy function from the Gaussian chain sta-
tistics, equivalent to the Neo-Hookean case, that 

is, 3 2
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is obtained from the micromechanics of the chain 
molecules as
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with 2 2 2 -2 2 -1[ -1][ ] ,  .i i i i i iB D Bκ λ λ κ λ κ= + =  In Eq. (10), the 
parameter μ represents the shear modulus, φ counts the 
number of chains joining at a junction, and κ measures the 
strengths of the constraints, respectively. Since the Flory-
Erman model at large stretches deviates significantly from 

the actual response of the networks due to the Gaussian 
nature of its phantom part, Boyce and Arruda [10] applied 
their eight-chain energy function for the phantom part to 
improve the overall response, which, we designate here 
as the modified Flory-Erman model. Replacing the Neo-
Hookean part by the eight-chain energy function, the 
modified Flory-Erman model yields
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where μ, N, γ, λc,r are defined in Section 3.1.
The constraint contribution of the stress-stretch rela-

tions has to be derived from the single differentiation of 
the constraint part of the energy function appearing in 
Eq. (11) and is demonstrated in Appendix A. If the analyti-
cal expressions for UN, EB, and PS fit to the correspond-
ing Treloar data, the optimal material parameter sets are 
found to be

, , 0.251  MPa,  25.46,  2.0
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, , 0.24 MPa,  22.07,  5.323 .
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Each of the parameter sets is used to simulate the 
experimental data of other two deformation modes. The 
results are plotted in Figure 3 as well as the corresponding 
errors from both fitting and simulation of experiments not 

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

λ[ ]

UN fitted, ET/PS simulated

P
[M

P
a]

0.1061 = Error(UN-fit)

0.2176 = Error(ET-sim)

0.0420 = Error(PS-sim)

1 2 3 4 5 6 7 8
λ[ ]

ET fitted, UN/PS simulated

0.0687 = Error(ET-fit)

0.4895 = Error(UN-sim)

0.2121 = Error(PS-sim)

1 2 3 4 5 6 7 8
λ[ ]

PS fitted, UN/ET simulated

 

 

0.0079 = Error(PS-fit)

1.3189 = Error(UN-sim)

0.1373 = Error(ET-sim)

UN sim
ET sim
PS sim
UN data
ET data
PS data

Figure 3: Performance of the Flory-Erman model modified by the eight-chain energy function on the Treloar data. The fitting quality and 
predictions are excellent, especially if compared to the similarly structured models, for example, the original eight-chain model or the Gent 
model, cf. Steinmann et al. [12].



16      M. Hossain et al.: Eight-chain and full-network models

used for the parameter identification. In comparison to the 
original eight-chain model, it is interesting to note that the 
inclusion of the constraint contribution to the eight-chain 
energy function improves the simulation for the EB in all 
three deformation cases as well as the simulations for UN 
and EB by the PS-fitted parameters, cf. Figure 3 (right). A 
small drawback of the modified model is that the addi-
tional contribution for the topological constraint yields a 
complicated lengthy expression for the stress-stretch rela-
tionships, see Appendix A.

3.3  GD model

To improve the prediction capability in multiaxial load-
ings for rubber-like materials, very recently Gornet et al. 
[19] proposed a strain energy function based on the first 
and second strain invariants of the right Cauchy-Green 
tensor. The first part is dependent on the first invariant 
and it corresponds to the Hart-Smith model. The equiva-
lence between the eight-chain model and I1-dependent 
part of the Hart-Smith model is established by Chagnon 
et al. [28]. To enhance the phantom network, that is, the 
cross-link part expressed by the first invariant I1, an addi-
tional function based on I2 is added to the energy function. 
Gornet et al. [19] show that such addition will constrain 
the eight-chains by a new network of chains on the sur-
faces of the cube, which mimics the behavior of the con-
straint contribution. Finally, the energy function of the GD 
model is expressed as
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where h1, h2, h3 are material parameters. Evaluation of 
Eq. (2) provides the corresponding analytical formulations 
for the UN, EB, and PS cases:
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By calibrating the UN, EB, and PS equations to the 
corresponding Treloar data, the optimal material param-
eters are found:

1 1 1
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3 3 3
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For validity of this model, each parameter set obtained 
from the optimization tool is used to simulate the other 
two deformation modes. The results are plotted in Figure 4 
together with fitting and simulation errors in each case. It 
can clearly be shown here that the simulations for the EB 
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Figure 4: Comparison between the GD model and the Treloar data. Fitting to the analytical formulations and model prediction quality are 
excellent, especially in UN and PS. Only predictions for the EB-fitted parameters overestimate the UN and PS data.
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In Eqs. (18–20), 1 -1/ 2 -2 -11 1
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Fitting the analytical Eqs. (18–20) to Treloar’s data 
yields the following parameter sets

0.277 MPa, 0.318 MPa, 0.322 MPa,
26.50,         30.11,          72.18.

UN EB PS

UN EB PSN N N
µ µ µ= = =

= = =

Figure 5 depicts all fits, the simulations of comple-
mentary deformation modes that are not used during 
optimization and the deviations in comparison to the Tre-
loar’s data. Both fitting quality and validity of the identi-
fied parameters are very good to excellent in the UN and 
EB cases. Optimization with respect to the PS data pro-
vides parameter sets that fail to predict the UN data, cf. 
Figure 5 (right). Similar to the classical eight-chain model, 
the bootstrapped model also fails to predict the S-shape 
in the case of UN for PS-fitted parameters. After analyz-
ing the errors, fittings, and the validation results, it can be 
concluded that with the same number of parameters, the 
bootstrapped eight-chain model illustrates better perfor-
mance in all deformation modes than the classical eight-
chain model.

3.5  Meissner-Matějka model

Based on the fact that to cope with the experimental data, 
not only the contribution from the cross-link part, but 
also a constraint term in the energy function is essential, 
Meissner and Matějka [22, 32] proposed an energy func-
tion where the cross-link term is derived from the struc-
ture-based Arruda-Boyce model and the constraint part is 
based on the first invariant of the generalized deformation 
tensor. Note that here the constraint part is exactly same 
as the constraint part in the extended tube model pro-
posed by Kalikse and Heinrich [33]. Then, the total energy 
function is expressed:
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where μ, N, μe, β(0 < β  ≤  1) are material parameters. The 
definitions of λc,r, γ are given in Section 3.1. Evaluation of 
Eq. (1) provides the corresponding analytical formulations 
for the UN, EB, and PS cases:
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and PS by the UN-fitted parameters produce results that 
are quantitatively much more acceptable than any other 
of the previous models with the same number of param-
eters, cf. Figures 4 (left and right). The simulations for the 
EB-fitted parameters overestimate the UN and PS data, cf. 
Figure 4 (middle), whereas the predictions for the PS-fit-
ted parameters are good to fair, cf. Figure 4 (right).

3.4  Bootstrapped eight-chain model

In an attempt to improve the results for the eight-chain 
model at small strain, a new model called bootstrapped 
eight-chain model with only two material parameters 
(same as in the original eight-chain model) is proposed by 
Miroshnychenko and Green [18, 29]. They further assume 
that in order to improve results, especially in the biaxial 
deformation, an additive form of the strain energy func-
tion that involves two functions, one depends on the first 
invariant and the other on the second invariant of a defor-
mation tensor, has to be formulated. Such an assertion is 
also supported by Pucci and Saccomandi [30], Hart-Smith 
[31]. The full strain energy function of the bootstrapped 
eight-chain model is written as:
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where i1 = λ1+λ2+λ3 and the definitions of λc, N are given in 
Section 3.1. For the complete expression of the eight-chain 
model, previous subsection is referred. The energy func-
tion from Eq. (16) yields three principal stresses as
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Using Eq. (17), the analytical formulations for the 
three different deformation modes, that is, UN, EB, and 
PS are derived as
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where λcu, λcb, λcp are defined in Eqs. (6–8). If one fits 
the  UN, EB, and PS equations to the corresponding 
Treloar data, the optimal material parameters are found 
to be:

, , 0.256 MPa, 0.055 MPa, 25.37

, , 0.270 MPa, 0.095 MPa, 23.47

, , 0.217 MPa, 0.146 MPa, 20.37 .
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Concerning validity of this model, all resulting 
curves and corresponding errors in comparison with Tre-
loar’s data are summarized in Figure 6. It reveals excel-
lent fitting and validity of the model in all deformation 
modes. During optimization for the parameter identifica-
tion, an important parameter, that is, β (0 < β  ≤  1) is kept 
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Figure 5: Performance of the bootstrapped eight-chain model on the Treloar data. The fittings and simulations are good to excellent, espe-
cially if compared to the similarly structured models, for example, the original eight-chain model or the two-parameter Gent model.
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Figure 6: Performance of the Meissner-Matějka model on the Treloar data. The fitting quality and model predictions are excellent in all 
deformation modes.
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frozen (β = 0.2) as suggested by Kaliske and Heinrich [14] 
for better fitting and simulation of the Treloar data, even 
if it can be determined during parameter identification. 
Note that due to the presence of the constraint contribu-
tion in the energy function, the simulations for the equibi-
axial case are better than the original eight-chain model. 
The predictions for the UN and PS cases by the EB-fitted 
parameters slightly overestimate the Treloar data, cf. 
Figure 6 (middle). In addition, it can be noted that this 
model captures all deformation mode data excellently if it 
is compared to the similarly structured three-parameters 
model, for example, the modified Flory-Erman model or 
the Gornet-Desmorat (GD) model.

3.6  Bechir model

As mentioned earlier, the classical eight-chain model 
ignores the contribution from the entanglements-like 
physical cross-links during deformation of the network. 
To add the effects of the interactions between chains of 
the cross-linked network, an extra energy function, in 
addition to the eight-chain energy function, is appended. 
The free energy of the constraint network is idealized 
using the standard three-chain energy function and the 
free energy of the unconstrained idealized network is con-
structed by means of the eight-chain model. Therefore, 
according to Bechir et al. [20], the total free energy func-
tion of this model is merely a combination of the two chain 
models, that is,
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β λ λ= =L  In Eq. (25), μf , μc, N8, N3, k are shear moduli 

for the free and constraint parts, numbers of chain seg-
ments for the eight- and three-chain functions, and a 
nonaffine parameter, respectively. Bechir et  al. [20] also 
proposed some relations for the material parameter set, 

for exampe, μ0 = μc+μf , where 0
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 μf = ρλr  μ0, 

and α = +max+(λ1̅, λ2̅, λ3̅). Note that λi̅ relate to the principal 
micro-stretches, whereas λi are the line stretches (contin-
uum stretches). Evaluation of Eq. (1) provides the corre-
sponding analytical formulations for the UN, EB, and PS 
cases:
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Fitting UN, EB, and PS equations to the correspond-
ing Treloar data, the optimal material parameters are 
obtained to be
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To study the model performance, each parameter set 
obtained from the optimization tool is used to simulate the 
other two deformation modes. The results are plotted in 
Figure 7 together with fitting and simulation errors in each 
case. Although, this model inherits more parameters, that 
is, five in total, but it can be clearly seen that each set of 
optimal parameters produces simulation results for the 
complementary deformation modes that are not quantita-
tively improved than any other of the previous models of 
less parameters.

3.7  Wu-Giessen model

Several authors [23, 24, 34, 35] coin the term “full-network” 
where the chains are assumed to be randomly oriented in 
space for which the strain energy function is derived by 
integrating the response of all chains over the space. Since 
the numerical integration for such a full-network model 
is computationally costly, a weighted average is proposed 
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by combining the three-chain and the eight-chain formu-
lations which might provide better results than the indi-
vidual three-chain or the eight-chain model [23], that is,

	 3 81-c cΨ Ψ ρ ρΨ = +  � (29)

where the parameter ρ is a constant or related to some 
other physical quantity which is for instance related to 
the deformation process and Ψ3c, Ψ8c are energy functions 
for the three-chain and eight-chain models, respectively. 
Such form of the full-network model was proposed by Wu 
and Giessen [23] to improve the modeling capacity for 
amorphous glassy polymers, for example, polycarbon-
ate, where the hyperelastic energy function is used for 
modelling the so-called back stress. Frequently used rela-
tion for ρ is max0.85 / ,Nρ λ=  where λmax = max(λ1, λ2, λ3). 
The factor 0.85 is chosen to provide the best correlation 
of Eq. (29) with numerical integration of the full-network 
equation. The analytical expressions for UN, EB, and PS 
are obtained according to the idea of the Wu and Giessen 
[23] model as
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where 1,8 1,8 1,8, , UN EB PS
c c cP P P  and 1,3 1,3 1,3, , UN EB PS

c c cP P P  are UN, EB, 
PS stresses for the eight-chain and three-chain models, 
respectively. For the derivations of 1,3 1,3, ,UN EB

c cP P  and 1,3 ,PS
cP  

our previous work is referred [12]. To verify the sensitiv-
ity of the model with respect to different deformation 
modes and also with material parameters, if the UN, EB, 
and PS equations fit to the corresponding Treloar data, the 
optimal material parameters are identified:

0.318 MPa,   0.403 MPa,    0.309 MPa,
63.69,            58.00,             90.53.

UN EB PS

UN EB PSN N N
µ µ µ= = =

= = =

Similar to other models, each parameter set of this 
model obtained from the fitting procedure is used to 
simulate the other two deformation modes and the cor-
responding errors are tabulated. The full-network model 
suggested by Wu and Giessen [23] predicts a biaxial stress-
stretch response which falls in between the results pre-
dicted by the eight-chain model and that predicted by the 
three-chain model. Aiming at better performance over the 
eight-chain model or the three-chain model, the capabil-
ity of this model to reproduce the experimental data for 
all deformation modes does not show any significant 
improvement so far, cf. Figure 8.

3.8  Zuniga-Beatty model

Zuniga and Beatty [36] at first amend the original eight-
chain and three-chain models by using a modified non-
Gaussian (Kuhn-Grün) probability function in the case of 
energy function derivation. Jernigan and Flory [37] show 
that an amended distribution function, in contrast to the 
Kuhn-Grün function, provides a much improved approxi-
mation to the exact result over the entire range of λr (rela-
tive chain stretch) values. Therefore, Zuniga and Beatty 
[36] rederive the energy functions for the eight-chain and 
three-chain models using the amended distribution func-
tion. Then, a modified full-network model is proposed by 
combining the amended versions of the eight-chain and 

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

λ[ ]

UN fitted, ET/PS simulated
P

[M
P

a]

0.1092 = Error(UN-fit)

0.2661 = Error(ET-sim)

0.0844 = Error(PS-sim)

1 2 3 4 5 6 7 8
λ[ ]

ET fitted, UN/PS simulated

0.0703 = Error(ET-fit)

0.4574 = Error(UN-sim)

0.2234 = Error(PS-sim)

1 2 3 4 5 6 7 8
λ[ ]

PS fitted, UN/ET simulated

 

 

0.0357 = Error(PS-fit)

1.0890 = Error(UN-sim)

0.3113 = Error(ET-sim)

UN sim
ET sim
PS sim
UN data
ET data
PS data

Figure 7: Performance of the Bechir model on the Treloar data.
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three-chain models in the line of Wu and Giessen [23] 
concept. Wu and Giessen [23] assume the same value for 
the number of chain segments, that is, N for the eight-
chain and three-chain models, which is unjustified due to 
inherent geometrical considerations of these two models. 
Hence, Zuniga and Beatty [36] propose separate values 
for N, that is,. N3, N8 for the three-chain and eight-chain 
models, respectively. Due to the amended form for the 
probability function, the energy functions of the eight-
chain and three-chain models are as follows
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Section 3.1. Hence, the modified form of the full-network 
energy function proposed by Zuniga and Beatty [36] is
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In Eq. (34), ΛL is related to the principal stretches 
through the state of deformation to which the continuum 
is subjected so that the greater stretch λ1 = ΛL and the chain 

stretch for the eight-chain model is 
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while a, b are two positive scaling factors. However, for 
simplicity, they choose to follow a = b = 1, see Zuniga and 
Beatty [36] for details. The analytical formulations for the 
UN, EB, and PS for this composite model are
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where the expressions for 1,3 cm 1,3 cm 1,3 cm 1,8 cm 1,8 cm 1,8 cm, , , , , UN EB PS UN EB PSP P P P P P 
1,3 cm 1,3 cm 1,3 cm 1,8 cm 1,8 cm 1,8 cm, , , , , UN EB PS UN EB PSP P P P P P  can be obtained from Appendix B and λcu, λcb, 

λcp are defined in Eqs. (6–8). The optimal parameter sets 
for this model are estimated as
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Concerning the validity of the model, the param-
eter set obtained from the optimization tool in each 
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Figure 8: Performance of the full-network model on the Treloar data.
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deformation case is used to simulate the other two defor-
mation modes. The results are plotted in Figure 9 together 
with fitting and simulation errors in each case. The fittings 
and simulations for UN- and EB-fitted parameters are 
good to excellent in predicting the data for other deforma-
tion modes except a small overestimation is observed for 
the PS data. It can be clearly stated here that with an addi-
tional parameter, the Zuniga-Beatty version of the full-
network shows better performance than the Wu-Giessen 
version. The reason might be that (i) Zuniga-Beatty used 
an improved version of the probability function and (ii) 
the scaling factor (ρ, in the original version of Wu-Giessen 
model) is replaced by a deformation-dependent stretch, 
cf. Eq. (34).

4  Conclusion
In this paper, a comparative study on the classical eight-
chain and full-network models and six of their modified 
versions is presented. Some of the modified versions are 
of phenomenological types, whereas others are originated 
from the micromechanics of chain molecules. In order to 
perform the comparative study, the analytical formulations 
in the case of three different deformation modes of the 
eight selected models are derived. Then, the performance 
evaluation is highlighted of all selected models in repro-
ducing the classical experimental data of Treloar. This 
study demonstrates that the two-parameter bootstrapped 

eight-chain model predicts the Treloar data better than the 
classical eight-chain model. Note that several constitu-
tive models, that is, the modified Flory-Erman model, the 
Meissner-Matějka model, the GD model, which consider 
constraint contribution in deriving their free energy func-
tions, predict all three deformation modes quite reason-
able than the classical eight-chain model. However, the 
Bechir model with five parameters does not show improved 
results in comparison to the original eight-chain model. In 
the case of full-network model, the Zuniga-Beatty version 
with an improved probability function for chain statistics 
shows better performance than the Wu-Giessen form of 
full-network model. Such performance analysis will help 
a design engineer or a beginnner in rubber mechanics to 
choose whether the classical eight-chain model or full-
network model or one of their modified versions is appro-
priate from a considerable number of rubber-like material 
models available in the literature.

Appendix A: Derivatives of the 
Flory-Erman energy function 
(constraint part)
To derive the analytical formulations for different defoma-
tion modes, the single derivatives of the energy function 
(constraint part) of the Flory-Erman model expressed in 
principal stretches are essential, that is,
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Figure 9: Performance of the Zuniga-Beatty version of the full-network model on the Treloar data. The fitting and simulations in all deforma-
tion modes are excellent except an underestimation occurs in the case of UN data for the PS-fitted parameters.
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Appendix B: Analytical expressions 
for the amended three-chain and 
eight-chain models
The analytical expressions for the amended three-chain 
and eight-chain models for different deformation modes, 
that is, UN, EB, and PS are as follows:

Uniaxial tension (UN):
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Equibiaxial tension (EB):
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Pure shear (PS):
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